§
- ImmediateCorollariesoftheAxioms 7
P(AB)=P(A)P
A
(B). (6)
And by
inductionweobtain
thegeneralformula (the
Multi-
plication
Theorem)
P(A
1
A
2
...A
n)
=
P(A
l
)P
Al
(A
2
)P
AlA
AA
3
)...P
Al
A
2
...A
n
- l
(A
n).
(7)
Thefollowingtheoremsfolloweasily
:
P
4
(5)g0,
(8)
P
A
(E)
=
1,
(9)
PAB+C)=?AB)+?AC).
(10)
Comparingformulae (8)
—
(10)
withaxiomsIII—
V,
wefindthat
thesystem
$
ofsetstogetherwiththesetfunctionP
A
(B) (pro-
videdAisafixedset),formafieldofprobabilityandtherefore,
alltheabovegeneraltheoremsconcerningP(B) holdtruefor
the
conditionalprobability P
A
(B) (provided theevent A is fixed).
Itisalsoeasytoseethat
P^(A)=1. (11)
From (6) andtheanalogousformula
P (AB)=P(B)P
B
(A)
weobtaintheimportantformula
:
PB{A)
=
^m,
(12)
whichcontains, inessence,theTheoremofBayes.
TheTheorem
on
TotalProbability:
Let
A
1
+A
2
+.
.
.+
A
n
—
E(thisassumesthattheeventsA
lf
A
2J
..
.
,A
n
aremutually
exclusive)andletXbearbitrary.Then
P(X)=
PiAJ
P
Al
(X)
+
P(A
2
)
P
At
(X)
+
...
+
P(A
n
)
P
An
(X).-
(13)
Proof
:
X
=
AiX+A
2
X+
.
..+A„X;
using
(4) wehave
P(X)=P(A
1
X)+P(A
2
X)+...+P(A„X)
andaccordingto
(6)
wehaveatthesametime
P(A
i
X)=P(A
i
)P
At
(X).
TheTheorem of Bayes: Let
A
1
+
A
2
+.
..
+
A
n
=
E and
X
bearbitrary,then
p (A
,
PWP^X)
x(
*
PiAJP^W
+
P(A
2
)P
A
,(X)
+ +
P(A
n
)P
A
„(X)'
(
>
i=
1,2,3,....,».