§5.
Independence 9
Bernsteinisactuallydedicatedtothefundamental investigation
of series
of independent random variables. Though the latest
dissertations (Markov,
Bernsteinandothers) frequentlyfailto
assume complete
independence, they nevertheless reveal the
necessityofintroducinganalogous,
weaker,conditions,inorder
toobtainsufficiently
significant
results (see
inthischapter
§6,
Markovchains)
.
Wethussee,intheconceptofindependence,atleastthegerm
ofthe peculiar type of problem inprobability theory. Inthis
book, however, we shall not stressthat fact, for here we are
interested mainly inthe logical foundationfor the specialized
investigationsofthetheoryofprobability.
Inconsequence, oneof themost important problemsinthe
philosophy of thenatural sciences is—inaddition tothe well-
knownoneregardingthe essence oftheconcept ofprobability
itself—to
makeprecisethepremiseswhichwouldmakeit
possible
toregard anygiven realevents asindependent. Thisquestion,
however,isbeyondthescopeofthisbook.
Letusturntothedefinitionofindependence.Givennexperi-
ments
5l
(1)
,5l
(2)
,
...
,5l
U)
,
thatis,ndecompositions
E
=
Af
+
A$
]
+
h
A
1
*}
i=\,2,...,n
ofthebasicsetE.Itisthenpossibletoassignr
=
r
1
r
2
...r
n
proba-
bilities (inthegeneralcase)
P^...qn
=P(A
(
q\
)
A%;..
A
{
q
n
J)^0
whichareentirelyarbitraryexceptforthesinglecondition
7
that
2 Ah<? 8 ...«»
= 1
(!)
Definition I. nexperiments 3i
(1)
,
5l
(2)
,
...
,
3l
(n
>
arecalled
mutually independent, iffor any
q
l9
q
2 ,
...
, q
n
thefollowing
equationholdstrue
:
p(4>4?•••
O
=
p
«>)p
(4?)
- • p(4:') • (2)
7
Onemayconstructafieldofprobabilitywitharbitraryprobabilitiessub-
jectonlytotheabove-mentionedconditions,asfollows:Eiscomposedofr
elements
£«,qt
.
..
q
n
. Let the corresponding elementary probabilities be
PqiQt...in>
andfinallylet A
q
i]
bethesetofall
£
f/l9, tm
.
9m
forwhich
<7t
=
q-