§- ConditionalMathematicalExpectations
53
E{u*A}(y)=E{uc^
}Ett
(y)
f(1)iscalled(if
itexists)theconditionalmathematical
expectationofthevariableyforknownvalue
ofu.If
wemultiply (1) byP{u){A),weobtainjy?(dE)=JE
u(y)PM(dEW).(2){ucA} AConverselyfrom
(2)followsformula (1).Incase P(M)(A)—0,in whichcase
(1)is meaningless,
(2)becomes trivial. Inthesamemannerasinthecaseofconditionalprobability
(§1)wecanprovethatE„(y) isdetermineduniquely—exceptforequiva-
lence—
by(2).Thevalue
ofE
u(y)for
w=
aweshalldenote
byE
u(a;
y).LetusalsonotethatE
u(y),aswellas P
u(y),dependsonlyuponthepartition9l
MandmaybedesignatedbyE9ltt(y).TheexistenceofE(y) isimpliedinthedefinitionofE
u
(y)(ifwesetA=#<»>,
thenE{ucA}(y)=
E(y)).Weshallnowprovethattheexistence
ofE
(y)isalso
sufficientfor
theexistence
ofEu(y).ForthisweonlyneedtoprovethatbythetheoremofNikodym
(§1),
the
setfunctionQ(A)=fyP(dE){ucA}is completely additive on5(m)and absolutelycontinuous withrespectto P
(m)(A). Thefirstpropertyisprovedverbatim asinthecaseofconditionalprobability
(§1).
Thesecondproperty—
absolutecontinuity—iscontainedinthefactthatfromQ(A)^0
the inequality P
U)(A) >0 must follow. If we assume thatP(M>(A)=
P{udA}=
0,itisclearthatQ(A)=fyP(dE)=f{ucA}andoursecond requirementisthus fulfilled.
Ifinequation
(1)wesetA—
E(u\weobtaintheformulaE(y) =EEU(V)- (3)
Wecan
show
furtherthatalmostsurelyE
u(ay+bz)=aEu(y)+bEu(z)
, (4)whereaandbaretwoarbitraryconstants.
(Theproofislefttothereader.)