§
- ConditionalMathematicalExpectations
53
E{u*A}(y)
=E
{uc^
}
E
tt
(y)
f
(1)
iscalled(if
it
exists)theconditionalmathematical
expectationof
thevariable
y
for
knownvalue
ofu.
If
wemultiply (1) byP
{u)
{A),weobtain
jy?(dE)=JE
u
(y)PM(dEW).
(2)
{ucA} A
Converselyfrom
(2)
followsformula (1).Incase P
(M)
(A)
—
0,
in whichcase
(1)
is meaningless,
(2)
becomes trivial. Inthe
samemannerasinthecaseofconditionalprobability
(§1)
we
canprovethatE„(y) isdetermineduniquely—exceptforequiva-
lence—
by
(2).
Thevalue
ofE
u(y)
for
w
=
awe
shalldenote
byE
u
(a;
y)
.Let
usalsonotethatE
u(y),
aswellas P
u(y),
dependsonlyuponthe
partition9l
M
andmaybedesignatedbyE
9ltt(y)
.
TheexistenceofE(y) isimpliedinthedefinitionofE
u
(y)
(if
wesetA
=#<»>,
thenE
{ucA}
(y)
=
E(y)).
Weshallnowprovethattheexistence
of
E
(y)
isalso
sufficient
for
theexistence
of
E
u(y)
.Forthisweonlyneedtoprovethatby
thetheoremofNikodym
(§1),
the
set
function
Q(A)=fyP(dE)
{ucA}
is completely additive on
5
(m)
and absolutely
continuous with
respectto P
(m)
(A). Thefirstpropertyis
provedverbatim asin
thecaseofconditionalprobability
(§1).
Thesecondproperty
—
absolutecontinuity—iscontainedinthefactthatfromQ(A)^0
the inequality P
U)
(A) >0 must follow. If we assume that
P
(M
>(A)
=
P{udA}
=
0,itisclearthat
Q(A)=fyP(dE)
=
f
{ucA}
andoursecond requirementisthus fulfilled.
Ifinequation
(1)
wesetA
—
E
(u
\
weobtaintheformula
E(y) =EE
U(V)
- (3)
Wecan
show
furtherthat
almostsurely
E
u
(ay+bz)
=aE
u(y)
+
bE
u
(z)
, (4)
whereaandbaretwoarbitraryconstants.
(Theproofisleftto
thereader.)