Foundations of the theory of probability

(Jeff_L) #1
§


  1. ConditionalMathematicalExpectations
    53


E{u*A}(y)

=E

{uc^
}

E

tt
(y)
f

(1)

iscalled(if
it

exists)theconditionalmathematical
expectationof

thevariable

y

for

knownvalue
ofu.

If
wemultiply (1) byP

{u)

{A),weobtain

jy?(dE)=JE
u

(y)PM(dEW).

(2)

{ucA} A

Converselyfrom
(2)

followsformula (1).Incase P

(M)

(A)


0,

in whichcase
(1)

is meaningless,
(2)

becomes trivial. Inthe

samemannerasinthecaseofconditionalprobability
(§1)

we

canprovethatE„(y) isdetermineduniquely—exceptforequiva-

lence—

by

(2).

Thevalue
ofE
u(y)

for
w

=
awe

shalldenote
byE
u

(a;
y)

.Let

usalsonotethatE
u(y),

aswellas P
u(y),

dependsonlyuponthe

partition9l
M

andmaybedesignatedbyE

9ltt(y)

.

TheexistenceofE(y) isimpliedinthedefinitionofE
u
(y)

(if

wesetA

=#<»>,
thenE

{ucA}

(y)

=
E(y)).

Weshallnowprovethattheexistence
of

E
(y)

isalso
sufficient

for


theexistence
of

E

u(y)

.Forthisweonlyneedtoprovethatby

thetheoremofNikodym
(§1),


the
set

function

Q(A)=fyP(dE)

{ucA}

is completely additive on

5

(m)

and absolutely

continuous with

respectto P


(m)

(A). Thefirstpropertyis

provedverbatim asin

thecaseofconditionalprobability
(§1).


Thesecondproperty


absolutecontinuity—iscontainedinthefactthatfromQ(A)^0

the inequality P


U)

(A) >0 must follow. If we assume that

P

(M

>(A)

=
P{udA}

=
0,itisclearthat

Q(A)=fyP(dE)

=

f

{ucA}

andoursecond requirementisthus fulfilled.


Ifinequation
(1)

wesetA


E

(u

\

weobtaintheformula

E(y) =EE

U(V)


  • (3)


Wecan


show
furtherthat

almostsurely

E
u

(ay+bz)

=aE

u(y)

+

bE

u

(z)
, (4)

whereaandbaretwoarbitraryconstants.


(Theproofisleftto

thereader.)

Free download pdf