Foundations of the theory of probability

(Jeff_L) #1
§


  1. NotesontheConceptofMathematical


Expectation
65

asageneralizedmathematical expectation.Welosein thiscase,


ofcourse,severalsimplepropertiesofmathematicalexpectation.


Forexample, inthiscasetheformula


E(s+
y)

=
E(x) +E(y)

is not always true. In this form the generalization is hardly


admissible. We mayadd however that, with some restrictive


supplementaryconditions,definition
(2)


becomesentirelynatural

anduseful.


Wecandiscusstheproblemasfollows.Let

X\
t

X21•••
j

X
n,






beasequenceofmutuallyindependentvariables,havingthesame


distributionfunction F


(x

^(a)

=F

(Xn)

(a), (n

=
1, 2, ...
)

asx.

Letfurther


*1+*2H

1"
*n

We nowask whether there exists
a


constant E*
(x)

such that

for
everye>


limP(|s

n

-E*(*)|
><0=O, w^+cx). (3)

Theansweris :
//

suchaconstantE*(x)exists,itisexpressedby

Formula
(2).


The
necessaryandsufficientconditionthat

Formula

(3) holdconsistsintheexistenceof limit (2) andtherelation

P(|*|>n)-o(±). (4)

To prove this we applythe theoremthat condition
(4)

is

necessaryandsufficientforthestabilityofthearithmeticmeans

s„, where,inthecaseofstability, wemayset

6

+n

d

n

=jadF(

x

)(a).


n

Ifthereexistsamathematicalexpectationintheformersense

(Formula
(1)),

thencondition
(4)

isalwaysfulfilled

7

. Sincein


thiscase£(x)

=
E*(x),thecondition
(3)

actuallydoesdefinea

generalization oftheconcept ofmathematical expectation. For

the generalized mathematical
expectation,

Properties I-VII

8

Cf.

A.
Kolmogorov,Bemerkungenzumeiner

Arbeit,
"UberdieSummen

zufdlligerGrossen"Math.Ann.v.102,1929,pp.484-488,TheoremXII.

7

Ibid,TheoremXIII.
Free download pdf