§5.StrongLawofLargeNumbers;ConvergenceofSeries 67where the variables x
nare mutuallyindependent. A sufficient8conditionforthenormalstrongstabilityofthearithmeticmeanss
nistheconvergenceoftheseries2*P
(i)n=lThisconditionisthebestin
thesensethatforanyseriesofcon-stantsb
nsuchthat^n=lwecanbuildaseriesofmutuallyindependentrandomvariablesxnsuchthatandthe correspondingarithmeticmeanss
nwill
notbestronglystable.Ifallx
nhavethesamedistributionfunctionF(jr>
(a),thentheexistenceofthemathematicalexpectationE(x)=jadFW(a)—
ooisnecessaryandsufficientfor
the
strong
stabilityofs
n;thesta-bilityinthis
caseisalwaysnormal
9.Again,let*£l>X>2)•••
)X
nt...bemutuallyindependentrandomvariables.Thentheprobability
of convergenceoftheseries
fin(2)n=lis equal
eitherto oneor tozero.Inparticular,thisprobability
equalsone whenbothseries
jjEfoJandJSy-fo)n=l n=lconverge. Letusfurtherassume
yn=
x
nincase[x
n\^l,yn=
incase|x
n
\>1.8Cf.A.Kolmogorov/Surlaloifortedesgrandesnombres,C.R.Acad.Sci.Parisv.
191,1930,pp.
910-911.9Theproofofthisstatementhasnotyetbeenpublished.