Foundations of the theory of probability

(Jeff_L) #1
§

5.StrongLawofLargeNumbers;ConvergenceofSeries 67

where the variables x
n

are mutuallyindependent. A sufficient

8

conditionforthenormalstrongstabilityofthearithmeticmeans

s
n

istheconvergenceoftheseries

2*P

(i)

n=l

Thisconditionisthebest

in
thesensethatforanyseriesofcon-

stantsb
n

suchthat

^

n=l

wecanbuildaseriesofmutuallyindependentrandomvariables

x

n

suchthat

andthe correspondingarithmeticmeanss
n

will
notbestrongly

stable.

Ifallx
n

havethesamedistributionfunctionF

(jr

>
(a),thenthe

existenceofthemathematicalexpectation

E(x)=jadFW(a)


oo

isnecessaryandsufficientfor
the


strong
stabilityofs
n

;thesta-

bilityinthis
caseisalwaysnormal


9

.

Again,let

*£l>

X>2)•••
)

X
nt

...

bemutuallyindependentrandomvariables.Thentheprobability


of convergenceoftheseries


fin

(2)

n=l

is equal
eitherto oneor tozero.Inparticular,thisprobability


equalsone whenbothseries


jjEfoJ

and

JSy-fo)

n=l n=l

converge. Letusfurtherassume


y

n

=
x
n

incase[x
n

\^l,

y

n

=
incase

|

x
n
\

>

1.

8

Cf.A.Kolmogorov/Surlaloifortedesgrandesnombres,C.R.Acad.Sci.

Parisv.
191,1930,pp.


910-911.

9

Theproofofthisstatementhasnotyetbeenpublished.
Free download pdf