Science 28Feb2020

(lily) #1

< 0.05 were considered statistically significant.
False discovery rates (qvalue) of the metabolo-
mics and 16SrDNA amplicon sequencing data
were estimated with the Benjamini-Hochberg
procedure. The Smirnov-Grubbs’test was used
for evaluating outliers. The similarity of micro-
biomes was tested using PERMANOVA (per-
mutational multivariate analysis of variance).


REFERENCES AND NOTES



  1. P. J. Turnbaughet al., An obesity-associated gut microbiome
    with increased capacity for energy harvest.Nature 444 ,
    1027 – 1031 (2006). doi:10.1038/nature05414;
    pmid: 17183312

  2. V. K. Ridauraet al., Gut microbiota from twins discordant for
    obesity modulate metabolism in mice.Science 341 , 1241214
    (2013). doi:10.1126/science.1241214; pmid: 24009397

  3. M. T. Khan, M. Nieuwdorp, F. Bäckhed, Microbial modulation of
    insulin sensitivity.Cell Metab. 20 , 753–760 (2014).
    doi:10.1016/j.cmet.2014.07.006; pmid: 25176147

  4. L. M. Coxet al., Altering the intestinal microbiota during a
    critical developmental window has lasting metabolic
    consequences.Cell 158 , 705–721 (2014). doi:10.1016/
    j.cell.2014.05.052; pmid: 25126780

  5. A. D. Kosticet al., The dynamics of the human infant gut
    microbiome in development and in progression toward type
    1 diabetes.Cell Host Microbe 17 , 260–273 (2015). doi:10.1016/
    j.chom.2015.01.001; pmid: 25662751

  6. J. L. Sonnenburg, F. Bäckhed, Diet-microbiota interactions as
    moderators of human metabolism.Nature 535 ,56–64 (2016).
    doi:10.1038/nature18846; pmid: 27383980

  7. I. Choet al., Antibiotics in early life alter the murine colonic
    microbiome and adiposity.Nature 488 , 621–626 (2012).
    doi:10.1038/nature11400; pmid: 22914093

  8. P. Kovatcheva-Datcharyet al., Dietary fiber-induced
    improvement in glucose metabolism is associated with
    increased abundance of prevotella.Cell Metab. 22 ,
    971 – 982 (2015). doi:10.1016/j.cmet.2015.10.001;
    pmid: 26552345

  9. H. J. Flint, E. A. Bayer, M. T. Rincon, R. Lamed, B. A. White,
    Polysaccharide utilization by gut bacteria: Potential for new
    insights from genomic analysis.Nat. Rev. Microbiol. 6 , 121– 131
    (2008). doi:10.1038/nrmicro1817; pmid: 18180751

  10. S. Fukudaet al., Bifidobacteria can protect from enteropathogenic
    infection through production of acetate.Nature 469 ,543– 547
    (2011). doi:10.1038/nature09646;pmid: 21270894

  11. Y. Furusawaet al., Commensal microbe-derived butyrate
    induces the differentiation of colonic regulatory T cells.Nature 504 ,
    446 – 450 (2013). doi:10.1038/nature12721;pmid: 24226770

  12. G. Frostet al., The short-chain fatty acid acetate reduces
    appetite via a central homeostatic mechanism.Nat. Commun.
    5 , 3611 (2014). doi:10.1038/ncomms4611; pmid: 24781306

  13. W. J. Lee, K. Hase, Gut microbiota-generated metabolites in
    animal health and disease.Nat. Chem. Biol. 10 , 416– 424
    (2014). doi:10.1038/nchembio.1535; pmid: 24838170

  14. E. E. Canfora, J. W. Jocken, E. E. Blaak, Short-chain fatty acids
    in control of body weight and insulin sensitivity.Nat. Rev.
    Endocrinol. 11 , 577–591 (2015). doi:10.1038/nrendo.2015.128;
    pmid: 26260141

  15. I. Kimuraet al., The gut microbiota suppresses insulin-
    mediated fat accumulation via the short-chain fatty acid
    receptor GPR43.Nat. Commun. 4 , 1829 (2013). doi:10.1038/
    ncomms2852; pmid: 23652017

  16. I. Kimuraet al., Short-chain fatty acids and ketones directly
    regulate sympathetic nervous system via G protein-coupled
    receptor 41 (GPR41).Proc. Natl. Acad. Sci. U.S.A. 108 ,
    8030 – 8035 (2011). doi:10.1073/pnas.1016088108;
    pmid: 21518883

  17. A. N. Thorburnet al., Evidence that asthma is a developmental
    origin disease influenced by maternal diet and bacterial
    metabolites.Nat. Commun. 6 , 7320 (2015). doi:10.1038/
    ncomms8320; pmid: 26102221

  18. P. D. Wadhwa, C. Buss, S. Entringer, J. M. Swanson,
    Developmental origins of health and disease: Brief history of
    the approach and current focus on epigenetic mechanisms.
    Semin. Reprod. Med. 27 , 358–368 (2009). doi:10.1055/
    s-0029-1237424; pmid: 19711246

  19. M. G. Dominguez-Belloet al., Partial restoration of the
    microbiota of cesarean-born infants via vaginal microbial
    transfer.Nat. Med. 22 , 250–253 (2016). doi:10.1038/
    nm.4039; pmid: 26828196
    20. S. Ussaret al., Interactions between gut microbiota, host
    genetics and diet modulate the predisposition to obesity and
    metabolic syndrome.Cell Metab. 22 , 516–530 (2015).
    doi:10.1016/j.cmet.2015.07.007; pmid: 26299453
    21. R. N. Carmodyet al., Diet dominates host genotype in shaping
    the murine gut microbiota.Cell Host Microbe 17 ,72–84 (2015).
    doi:10.1016/j.chom.2014.11.010; pmid: 25532804
    22. S. Fujisakaet al., Diet, genetics, and the gut microbiome drive
    dynamic changes in plasma metabolites.Cell Rep. 22 ,
    3072 – 3086 (2018). doi:10.1016/j.celrep.2018.02.060;
    pmid: 29539432
    23. R. A. Koethet al., Intestinal microbiota metabolism of
    L-carnitine, a nutrient in red meat, promotes atherosclerosis.
    Nat. Med. 19 , 576–585 (2013). doi:10.1038/nm.3145;
    pmid: 23563705
    24. E. Y. Hsiaoet al., Microbiota modulate behavioral and
    physiological abnormalities associated with
    neurodevelopmental disorders.Cell 155 , 1451–1463 (2013).
    doi:10.1016/j.cell.2013.11.024; pmid: 24315484
    25. S. Yoshimotoet al., Obesity-induced gut microbial metabolite
    promotes liver cancer through senescence secretome.
    Nature 499 ,97–101 (2013). doi:10.1038/nature12347;
    pmid: 23803760
    26. F. De Vadderet al., Microbiota-generated metabolites promote
    metabolic benefits via gut-brain neural circuits.Cell 156 ,
    84 – 96 (2014). doi:10.1016/j.cell.2013.12.016; pmid: 24412651
    27. J. C. McNeliset al., GPR43 potentiatesb-cell function in
    obesity.Diabetes 64 , 3203–3217 (2015). doi:10.2337/
    db14-1938; pmid: 26023106
    28. G. Tolhurstet al., Short-chain fatty acids stimulate glucagon-
    like peptide-1 secretion via the G-protein-coupled receptor
    FFAR2.Diabetes 61 , 364–371 (2012). doi:10.2337/db11-1019;
    pmid: 22190648
    29. C. Tanget al., Loss of FFA2 and FFA3 increases insulin secretion
    and improves glucose tolerance in type 2 diabetes.Nat. Med. 21 ,
    173 – 177 (2015). doi:10.1038/nm.3779; pmid: 25581519
    30. E. Le Poulet al., Functional characterization of human receptors for
    short chain fatty acids and their role in polymorphonuclear cell
    activation.J. Biol. Chem. 278 ,25481–25489 (2003). doi:10.1074/
    jbc.M301403200; pmid: 12711604
    31. A. J. Brownet al., The Orphan G protein-coupled receptors
    GPR41 and GPR43 are activated by propionate and other short
    chain carboxylic acids.J. Biol. Chem. 278 , 11312–11319 (2003).
    doi:10.1074/jbc.M211609200; pmid: 12496283
    32. A. Jawerbaum, V. White, Animal models in diabetes and
    pregnancy.Endocr. Rev. 31 , 680–701 (2010). doi:10.1210/
    er.2009-0038; pmid: 20534704
    33. J. L. Pluznicket al., Olfactory receptor responding to gut
    microbiota-derived signals plays a role in renin secretion and blood
    pressure regulation.Proc.Natl.Acad.Sci.U.S.A. 110 , 4410– 4415
    (2013). doi:10.1073/pnas.1215927110; pmid: 23401498
    34. I. Kimura, A. Ichimura, R. Ohue-Kitano, M. Igarashi, Free fatty
    acid receptors in health and disease.Physiol. Rev. 100 ,
    171 – 210 (2020). doi:10.1152/physrev.00041.2018;
    pmid: 31487233
    35. N. Singhet al., Activation of Gpr109a, receptor for niacin and
    the commensal metabolite butyrate, suppresses colonic
    inflammation and carcinogenesis.Immunity 40 , 128– 139
    (2014). doi:10.1016/j.immuni.2013.12.007; pmid: 24412617
    36. K. M. Maslowskiet al., Regulation of inflammatory responses
    by gut microbiota and chemoattractant receptor GPR43.
    Nature 461 , 1282–1286 (2009). doi:10.1038/nature08530;
    pmid: 19865172
    37. K. Huberet al., Inhibitors of histone deacetylases: Correlation
    between isoform specificity and reactivation of HIV
    type 1 (HIV-1) from latently infected cells.J. Biol. Chem.
    286 ,22211–22218 (2011). doi:10.1074/jbc.M110.180224;
    pmid: 21531716
    38. M. Waldecker, T. Kautenburger, H. Daumann, C. Busch,
    D. Schrenk, Inhibition of histone-deacetylase activity by short-
    chain fatty acids and some polyphenol metabolites formed in
    the colon.J. Nutr. Biochem. 19 , 587–593 (2008). doi:10.1016/
    j.jnutbio.2007.08.002; pmid: 18061431
    39. A. K. Taggartet al., (D)-beta-Hydroxybutyrate inhibits
    adipocyte lipolysis via the nicotinic acid receptor PUMA-G.
    J. Biol. Chem. 280 , 26649–26652 (2005). doi:10.1074/
    jbc.C500213200; pmid: 15929991
    40. J. A. Sanfordet al., Inhibition of HDAC8 and HDAC9 by
    microbial short-chain fatty acids breaks immune tolerance of
    the epidermis to TLR ligands.Sci. Immunol. 1 , eaah4609
    (2016). doi:10.1126/sciimmunol.aah4609; pmid: 28783689
    41. S. D. Parlee, O. A. MacDougald, Maternal nutrition and risk of
    obesity in offspring: The Trojan horse of developmental


plasticity.Biochim. Biophys. Acta 1842 , 495–506 (2014).
doi:10.1016/j.bbadis.2013.07.007; pmid: 23871838
42.R.C.Whitaker,J.A.Wright,M.S.Pepe,K.D.Seidel,
W. H. Dietz, Predicting obesity in young adulthood from
childhood and parental obesity.N. Engl. J. Med. 337 ,
869 – 873 (1997). doi:10.1056/NEJM199709253371301;
pmid: 9302300


  1. N. J. Binkin, R. Yip, L. Fleshood, F. L. Trowbridge, Birth weight
    and childhood growth.Pediatrics 82 , 828–834 (1988).
    pmid: 3186371

  2. T. Harder, E. Rodekamp, K. Schellong, J. W. Dudenhausen,
    A. Plagemann, Birth weight and subsequent risk of type 2
    diabetes: A meta-analysis.Am. J. Epidemiol. 165 , 849– 857
    (2007). doi:10.1093/aje/kwk071; pmid: 17215379

  3. H. K. Nam, K. H. Lee, Small for gestational age and obesity:
    Epidemiology and general risks.Ann. Pediatr. Endocrinol. Metab.
    23 ,9–13 (2018). doi:10.6065/apem.2018.23.1.9;
    pmid: 29609444

  4. F. Oberdorfer, A. Theobald, C. Prenant, A practical method for
    the preparation of^11 C-acetate.Appl. Radiat. Isot. 46 , 317– 321
    (1995). doi:10.1016/0969-8043(95)00008-2

  5. J. Miyamotoet al., Ketone body receptor GPR43 regulates lipid
    metabolism under ketogenic conditions.Proc.Natl.Acad.Sci.U.S.A.
    116 ,23813–23821 (2019). doi:10.1073/pnas.1912573116;
    pmid: 31685604

  6. M. Kasubuchiet al., Membrane progesterone receptor beta
    (mPRb/Paqr8) promotes progesterone-dependent neurite
    outgrowth in PC12 neuronal cells via non-G protein-coupled
    receptor (GPCR) signaling.Sci. Rep. 7 , 5168 (2017).
    doi:10.1038/s41598-017-05423-9; pmid: 28701790

  7. T. Satoet al., Paneth cells constitute the niche for Lgr5 stem
    cells in intestinal crypts.Nature 469 , 415–418 (2011).
    doi:10.1038/nature09637; pmid: 21113151

  8. M. Arita, Mediator lipidomics in acute inflammation and
    resolution.J. Biochem. 152 , 313–319 (2012). doi:10.1093/jb/
    mvs092; pmid: 22923733

  9. K. Tanakaet al., Compensatory glutamine metabolism
    promotes glioblastoma resistance to mTOR inhibitor
    treatment.J. Clin. Invest. 125 , 1591–1602 (2015). doi:10.1172/
    JCI78239; pmid: 25798620

  10. I. Kimuraet al., Maternal gut microbiota in pregnancy dictates
    offspring metabolic phenotype, v6, Dryad (2020);
    https://doi.org/10.5061/dryad.5hqbzkh29.


ACKNOWLEDGMENTS
We thank K. Igarashi for metabolome analysis; A. Nagata for SCFA
analysis; M. Arita and S. Kasuga for in vitro assay; and T. Sasaki,
M. Akehi, and H. Hirano for PET imaging.Funding:This work
was supported by research grants from the JSPS KAKENHI
(JP17H05344 to I.K., JP15H05897 and JP15H05898 to M.A.,
and JP18H04680 and JP17KT0055 to K.H.), AMED (JP18gm1010007
to I.K. and JP18gm1010004h0103 to K.H.), the Lotte Foundation
(to I.K.), the Institute for Fermentation Osaka (to I.K.), the
Takeda Science Foundation (to H.K.), the Asahi Grass Foundation
(to K.H.), and the Yakult Science Foundation (to K.H.).Author
contributions:I.K., J.M., R.O.-K., K.W., T.Y., M.O., R.A., Y.I., D.K.,
D.I., A.I., Y.T., S.T., S.K., M.W., M.I., F.N., H.K., M.S., K.I., and K.H.
performed the experiments. I.K., J.M., R.O.-K., and K.H. wrote the
manuscript. I.K., J.M., R.O.-K., J.I., G.T., H.O., M.A., H.I., and
K.H. interpreted the data. I.K. and K.H. supervised the project. All
authors read and approved the final manuscript.Competing interests:
Theauthorsdeclarenocompetinginterests.Data and materials
availability:ThesourcedataunderlyingFigs.1to6,figs.S1toS24,and
metabolome analysis have been deposited into the Dryad repository
( 52 ). The raw data for 16SrDNA amplicon sequencing have been
deposited at the DNA Data Bank of Japan (DDBJ) under the accession
nos. DRA007699 (fig. S3, A and B), DRA007700 (fig. S5, A and B),
DRA009267 (fig. S6, A and B), DRA007701 (fig. S13, A and B),
DRA009265 (fig. S19, A and B), and DRA009266 (fig. S23, A and B). All
other data generated or analyzed during this study are included in this
article and its supplementary materials.

SUPPLEMENTARY MATERIALS
science.sciencemag.org/content/367/6481/eaaw8429/suppl/DC1
Figs. S1 to S24
Tables S1 to S5
View/request a protocol for this paper fromBio-protocol.

30 January 2019; resubmitted 25 November 2019
Accepted 13 January 2020
10.1126/science.aaw8429

Kimuraet al.,Science 367 , eaaw8429 (2020) 28 February 2020 12 of 12


RESEARCH | RESEARCH ARTICLE

Free download pdf