Science 28Feb2020

(lily) #1

  1. A. P. Rapoportet al., NY-ESO-1-specific TCR-engineered T cells
    mediate sustained antigen-specific antitumor effects in
    myeloma.Nat. Med. 21 ,914–921 (2015). doi:10.1038/
    nm.3910; pmid: 26193344

  2. T. S. Nowickiet al., A pilot trial of the combination of transgenic
    NY-ESO-1-reactive adoptive cellular therapy with dendritic cell
    vaccination with or without ipilimumab.Clin. Cancer Res. 25 ,
    2096 – 2108 (2019). doi:10.1158/1078-0432.CCR-18-3496;
    pmid: 30573690

  3. E. Provasiet al., Editing T cell specificity towards leukemia by
    zinc finger nucleases and lentiviral gene transfer.Nat. Med. 18 ,
    807 – 815 (2012). doi:10.1038/nm.2128; pmid: 20400962

  4. G. M. Bendleet al., Lethal graft-versus-host disease in mouse
    models of T cell receptor gene therapy.Nat. Med. 16 , 565–570,
    1p, 570 (2010). doi:10.1038/nm.2128; pmid: 20400962

  5. K. Schoberet al., Orthotopic replacement of T-cell receptor
    a- andb-chains with preservation of near-physiological T-cell
    function.Nat. Biomed. Eng. 3 , 974–984 (2019). doi:10.1038/
    s41551-019-0409-0; pmid: 31182835

  6. A. Schietinger, J. J. Delrow, R. S. Basom, J. N. Blattman,
    P. D. Greenberg, Rescued tolerant CD8 T cells are preprogrammed
    to reestablish the tolerant state.Science 335 ,723–727 (2012).
    doi:10.1126/science.1214277; pmid: 22267581

  7. H. Nishimura, M. Nose, H. Hiai, N. Minato, T. Honjo,
    Development of lupus-like autoimmune diseases by disruption
    of the PD-1 gene encoding an ITIM motif-carrying
    immunoreceptor.Immunity 11 ,141–151 (1999). doi:10.1016/
    S1074-7613(00)80089-8; pmid: 10485649

  8. P. M. Odorizzi, K. E. Pauken, M. A. Paley, A. Sharpe,
    E. J. Wherry, Genetic absence of PD-1 promotes accumulation
    of terminally differentiated exhausted CD8+T cells.J. Exp.
    Med. 212 , 1125–1137 (2015). doi:10.1084/jem.20142237;
    pmid: 26034050

  9. L. J. Ruppet al., CRISPR/Cas9-mediated PD-1 disruption
    enhances anti-tumor efficacy of human chimeric antigen
    receptor T cells.Sci. Rep. 7 , 737 (2017). doi:10.1038/s41598-
    017-00462-8; pmid: 28389661

  10. I. Serganovaet al., Enhancement of PSMA-directed CAR
    adoptive immunotherapy by PD-1/PD-L1 blockade.Mol. Ther.
    Oncolytics 4 ,41–54 (2016). doi:10.1016/j.omto.2016.11.005;
    pmid: 28345023

  11. S. Suet al., CRISPR-Cas9 mediated efficient PD-1 disruption on
    human primary T cells from cancer patients.Sci. Rep. 6 ,
    20070 (2016). doi:10.1038/srep20070; pmid: 26818188

  12. L. Mengeret al., TALEN-mediated inactivation of PD-1 in
    tumor-reactive lymphocytes promotes intratumoral T-cell
    persistence and rejection of established tumors.Cancer Res.
    76 , 2087–2093 (2016). doi:10.1158/0008-5472.CAN-15-3352;
    pmid: 27197251

  13. L. Cherkasskyet al., Human CAR T cells with cell-intrinsic
    PD-1 checkpoint blockade resist tumor-mediated inhibition.
    J. Clin. Invest. 126 , 3130–3144 (2016). doi:10.1172/JCI83092;
    pmid: 27454297

  14. J. Renet al., Multiplex genome editing to generate universal
    CAR T cells resistant to PD1 inhibition.Clin. Cancer Res. 23 ,
    2255 – 2266 (2017). doi:10.1158/1078-0432.CCR-16-1300;
    pmid: 27815355

  15. J. Renet al., A versatile system for rapid multiplex genome-edited
    CAR T cell generation.Oncotarget 8 ,17002–17011 (2017).
    doi:10.18632/oncotarget.15218; pmid: 28199983

  16. X.Liuet al., CRISPR-Cas9-mediated multiplex gene editing in
    CAR-T cells.Cell Res. 27 , 154–157 (2017). doi:10.1038/
    cr.2016.142; pmid: 27910851

  17. E. K. Moonet al., Blockade of programmed death 1 augments
    the ability of human T cells engineered to target NY-ESO-1 to
    control tumor growth after adoptive transfer.Clin. Cancer Res.
    22 , 436–447 (2016). doi:10.1158/1078-0432.CCR-15-1070;
    pmid: 26324743

  18. C. T. Charlesworthet al., Identification of preexisting adaptive
    immunity to Cas9 proteins in humans.Nat. Med. 25 ,249– 254
    (2019). doi:10.1038/s41591-018-0326-x;pmid: 30692695

  19. D. L. Wagneret al., High prevalence ofStreptococcus pyogenes
    Cas9-reactive T cells within the adult human population.Nat.
    Med. 25 , 242–248 (2019). doi:10.1038/s41591-018-0204-6;
    pmid: 30374197

  20. V. L. Simhadriet al., Prevalence of pre-existing antibodies to
    CRISPR-associated nuclease Cas9 in the USA population.


Mol. Ther. Methods Clin. Dev. 10 , 105–112 (2018). doi:10.1016/
j.omtm.2018.06.006; pmid: 30073181


  1. D. T. Teacheyet al., Identification of predictive biomarkers for
    cytokine release syndrome after chimeric antigen receptor
    T-cell therapy for acute lymphoblastic leukemia.Cancer Discov.
    6 , 664–679 (2016). doi:10.1158/2159-8290.CD-16-0040;
    pmid: 27076371

  2. P. F. Robbinset al., A pilot trial using lymphocytes genetically
    engineered with an NY-ESO-1-reactive T-cell receptor: Long-term
    follow-up and correlates with response.Clin. Cancer Res. 21 ,
    1019 – 1027 (2015). doi:10.1158/1078-0432.CCR-14-2708;
    pmid: 25538264

  3. S. P. D’Angeloet al., Antitumor activity associated with
    prolonged persistence of adoptively transferred
    NY-ESO-1c259T cells in synovial sarcoma.Cancer Discov. 8 ,
    944 – 957 (2018). doi:10.1158/2159-8290.CD-17-1417;
    pmid: 29891538

  4. C. L. Nobleset al., iGUIDE: An improved pipeline for analyzing
    CRISPR cleavage specificity.Genome Biol. 20 , 14 (2019).
    doi:10.1186/s13059-019-1625-3; pmid: 30654827

  5. S. Q. Tsaiet al., GUIDE-seq enables genome-wide profiling
    of off-target cleavage by CRISPR-Cas nucleases.
    Nat. Biotechnol. 33 ,187–197 (2015). doi:10.1038/nbt.3117;
    pmid: 25513782

  6. M. M. Vilenchik, A. G. Knudson, Endogenous DNA double-strand
    breaks: Production, fidelity of repair, and induction of cancer.
    Proc. Natl. Acad. Sci. U.S.A. 100 ,12871–12876 (2003).
    doi:10.1073/pnas.2135498100;pmid:14566050

  7. M. Kosicki, K. Tomberg, A. Bradley, Repair of double-strand
    breaks induced by CRISPR-Cas9 leads to large deletions and
    complex rearrangements.Nat. Biotechnol. 36 , 765–771 (2018).
    doi:10.1038/nbt.4192; pmid: 30010673

  8. D. Maddaloet al., In vivo engineering of oncogenic
    chromosomal rearrangements with the CRISPR/Cas9 system.
    Nature 516 , 423–427 (2014). doi:10.1038/nature13902;
    pmid: 25337876

  9. L. Poirotet al., Multiplex genome-edited T-cell manufacturing
    platform for“off-the-shelf”adoptive T-cell immunotherapies.
    Cancer Res. 75 , 3853–3864 (2015). doi:10.1158/
    0008-5472.CAN-14-3321; pmid: 26183927

  10. W. Qasimet al., Molecular remission of infant B-ALL after infusion
    of universal TALEN gene-edited CAR T cells.Sci. Transl. Med.
    9 , eaaj2013 (2017). doi:10.1126/scitranslmed.aaj2013;
    pmid: 28123068

  11. G. P. Dunn, A. T. Bruce, H. Ikeda, L. J. Old, R. D. Schreiber,
    Cancer immunoediting: From immunosurveillance to tumor
    escape.Nat. Immunol. 3 , 991– 998 (2002). doi:10.1038/
    ni1102-991; pmid: 12407406

  12. J. Bäsecke, F. Griesinger, L. Trümper, G. Brittinger, Leukemia-
    and lymphoma-associated genetic aberrations in healthy
    individuals.Ann. Hematol. 81 ,64–75 (2002). doi:10.1007/
    s00277-002-0427-x; pmid: 11907785

  13. S. I. Ismail, R. G. Naffa, A. M. Yousef, M. T. Ghanim, Incidence
    of bcr‑abl fusion transcripts in healthy individuals.Mol. Med.
    Rep. 9 , 1271–1276 (2014). doi:10.3892/mmr.2014.1951;
    pmid: 24535287

  14. R. Chiarle, Translocations in normal B cells and cancers:
    Insights from new technical approaches.Adv. Immunol. 117 ,
    39 – 71 (2013). doi:10.1016/B978-0-12-410524-9.00002-5;
    pmid: 23611285

  15. C. A. Michie, A. McLean, C. Alcock, P. C. Beverley, Lifespan
    of human lymphocyte subsets defined by CD45 isoforms.
    Nature 360 ,264–265 (1992). doi:10.1038/360264a0;
    pmid: 1436108

  16. A. R. Mclean, C. A. Michie, In vivo estimates of division and death
    rates of human T lymphocytes.Proc. Natl. Acad. Sci. U.S.A. 92 ,
    3707 – 3711 (1995). doi:10.1073/pnas.92.9.3707;pmid:7731969

  17. K. George, L. J. Chappell, F. A. Cucinotta, Persistence of space
    radiation induced cytogenetic damage in the blood
    lymphocytes of astronauts.Mutat. Res. 701 ,75–79 (2010).
    doi:10.1016/j.mrgentox.2010.02.007; pmid: 20176126

  18. C. H. June, J. T. Warshauer, J. A. Bluestone, Is autoimmunity
    the Achilles’heel of cancer immunotherapy?Nat. Med. 23 ,
    540 – 547 (2017). doi:10.1038/nm.4321; pmid: 28475571

  19. T. Wartewiget al., PD-1 is a haploinsufficient suppressor of
    T cell lymphomagenesis.Nature 552 , 121–125 (2017).
    doi:10.1038/nature24649;pmid: 29143824
    50. C. A. Vakulskaset al., A high-fidelity Cas9 mutant delivered as
    a ribonucleoprotein complex enables efficient gene editing in
    human hematopoietic stem and progenitor cells.Nat. Med. 24 ,
    1216 – 1224 (2018). doi:10.1038/s41591-018-0137-0;
    pmid: 30082871


ACKNOWLEDGMENTS
We thank the Human Immunology Core at the University of
Pennsylvania for providing leukocytes for research; the Clinical Cell
and Vaccine Production Facility for GMP cell manufacturing; the
Hospital of the University of Pennsylvania Apheresis Unit for
peripheral blood mononuclear cell collections from which NYCE
T cells were manufactured; regulatory assistance from E. Meagher,
S. Emmanuel, E. Veloso, and the Office of Clinical Research, the
Center for Advanced Retinal and Ocular Therapeutics Clinical
Vector Core (CAROT CVC); RECIST Core for radiologic assessment
of response; Data Safety Monitoring Board consisting of L. Schuchter,
A. Rapoport, and M. Dhodapkar; J. Everett for data analysis with
iGUIDE; C. Bartoszek, J. Finklestein, M. Gohil, A. Kim, N. Koterba,
M. Mahir, B. Menchel, T. Mikheeva, F. Nazimuddin, H. Parakandi,
R. Reynolds, M. Feldman, and T. Yoder for experimental support;
W. Gladney for protocol development and management; and
R. Chiarle at the Boston Children’s Hospital for helpful discussions.
Funding:This work was funded by the National Institutes
of Health (grant 2R01CA120409 to Y.Z. and C.H.J.), Alliance for
Cancer Gene Therapy Investigator’s Award (J.A.F. and R.M.Y.),
NCI P01 CA214278 (J.A.F., R.M.Y., S.F.L., and C.H.J.), NCI U54
CA24711 (J.A.F., M.M.D., R.M.Y., and C.H.J.), NIA U01 AG066100
(J.A.F., R.M.Y., and C.H.J.), NSF Engineering Research Center
for Cell Manufacturing Technologies Seed Grant (J.A.F. and B.L.L.),
Abramson Cancer Center Emerging Cancer Informatics Center
of Excellence Award (J.A.F.), and sponsored research grants from
the Parker Institute for Cancer Immunotherapy and Tmunity
Therapeutics.Author contributions:Conceptualization: Y.Z.,
C.H.J., F.D.B.; Data curation: V.E.G.; Formal analysis: W.-T.H., J.A.F.;
Funding acquisition: C.H.J.; Investigation: E.A.S., A.Ce., K.L.W.,
A.D.C., E.L., P.A.M., I.K., M.G., J.X., I.J., J.S., T.M., A.Ch., A.L.G.,
S.D., A.L., K.R.P., Y.Q., A.T.S., H.Y.C., B.M.C.; Methodology:
L.T., A.F., J.S.-M., F.D.B.; Project administration: R.M.Y., A.C.,
G.P., J.K.J.; Software: C.L.N.; Supervision: J.A.F., S.F.L., E.O.H.,
J.J.M., R.M.Y., D.L.S.; Validation: V.E.G., F.C., L.T., M.M.D.,
S.F.L., J.S.-M.; Writing–original draft: E.A.S., J.A.F., S.F.L.,
C.H.J.; Writing–review and editing: B.L.L., D.L.S., H.Y.C., F.D.B.
Competing interests:Y.Z. and C.H.J. are inventors on patent
applications 15/516,052 and WO2016069282A1 submitted
by the University of Pennsylvania that cover the use of gene
modification in T cells for adoptive cell therapy. A.C., B.L.L., Y.Z.,
and C.H.J. are scientific founders of Tmunity and have equity in
Tmunity. J.A.F. and M.M.D. have funding support from Tmunity.
A.T.S. is a scientific founder of Immunai and has funding support
from Arsenal Biosciences. S.F.L. has funding support from
Tmunity, Cabaletta, and Novartis and is a consultant for Gilead/
Kite. H.Y.C. is a co-founder of Accent Therapeutics and Boundless
Bio and is a consultant for 10x Genomics, Arsenal Biosciences,
and Spring Discovery. The other authors declare no competing
interests.Data and materials availability:iGUIDE-seq data have
been deposited with links to BioProject accession number
PRJNA601142 in the NCBI BioProject database (https://www.ncbi.
nlm.nih.gov/bioproject/). scRNA-seq data have been deposited
into the database of Genotypes and Phenotypes dbGaP
(https://www.ncbi.nlm.nih.gov/gap/) under accession number
phs001707. Reagents are available under an MTA with the
University of Pennsylvania; address requests to C.H.J.
SUPPLEMENTARY MATERIALS
science.sciencemag.org/content/367/6481/eaba7365/suppl/DC1
Materials and Methods
Supplementary Text
Figs. S1 to S10
Tables S1 to S6
References ( 51 – 55 )
View/request a protocol for this paper fromBio-protocol.

3 January 2020; accepted 28 January 2020
Published online 6 February 2020
10.1126/science.aba7365

Stadtmaueret al.,Science 367 , eaba7365 (2020) 28 February 2020 12 of 12


RESEARCH | RESEARCH ARTICLE

Free download pdf