Advances in Biolinguistics - The Human Language Faculty and Its Biological Basis

(Ron) #1

Chrysikou, E. G., & Thompson-Schill, S. L. ( 2011). Dissociable brain states linked
to common and creative object use. Human Brain Mapping, 32 (4), 665–675.
Cowan, N. (2001). The magical number 4 in shor t-term memory: A reconsideration
of mental storage capacity. Behavioral and Brain Sciences, 24 (1), 87–114.
Cowan, N. (2010). The magical mystery four. How is working memory capacity
limited, and why? Current Directions in Psychological Science, 19 (1), 51–57.
D’Esposito, M., & Postle, B. R. (2015). The cogn itive neuroscience of working
memory. Psychology, 66 (1), 115.
Dehaene, S., & Changeux, J. P. (2011). Experiment al and theoretical approaches
to conscious processing. Neuron, 70 (2), 200–227.
Dehaene, S., & Cohen, L. (2007). Cultural recyclin g of cortical maps. Neuron,
56 (2), 384–398.
Dennett, D. C. (2006). The frame problem of AI. In Philosophy of Psychology: Con-
temporary Readings, New York: Routledge. 433–454.
Dipoppa, M., & Gutkin, B. S. (2013). Flexible freque ncy control of cortical oscil-
lations enables computations required for working memory. Proceedings of the
National Academy of Sciences, 110 (31), 12828–12833.
Duncan, J. (2010). The multiple-demand (MD) system of the primate brain: Mental
programs for intelligent behaviour. Trends in Cognitive Sciences, 14 (4),
172–179.
Embick, D., & Poeppel, D. (2006). Mapping syntax using imaging: Problems and
prospects for the study of neurolinguistic computation. Encyclopedia of Language
and Linguistics, 2 , 484–486.
Fedorenko, E., Duncan, J., & Kanwisher, N. (2012). Lang uage-selective and domain-
general regions lie side by side within Broca’s area. Current Biology, 22 (21),
2059–2062.
Fedorenko, E., & Thompson-Schill, S. L. (2014). Reworking the language network.
Trends in cognitive sciences, 18 (3), 120–126.
Fiebach, C. J., Schlesewsky, M., Lohmann, G., Von Cramon, D. Y., & Friederici,
A.D. (2005). Revisiting the role of Broca’s area in sentence processing: Syntactic
integration versus syntactic working memory. Human brain mapping, 24 (2),
79–91.
Fitch, W., & Martins, M. D. (2014). Hierarchical processing in music, language,
and action: Lashley revisited. Annals of the New York Academy of Sciences, 1316 (1),
87–104.
Fodor, J. A. (1987). Modules, frames, fridgeons, sleeping dog s and the music of
the spheres. In Z. Pylyshyn (Ed.). The robot’s dilemma: The frame problem in
artifi cial intelligence. Norwood, NJ: Ablex, 139–149.
Fodor, J. A., & Pylyshyn, Z. W. (1988). Connectionism and cogni tive architecture:
A critical analysis. Cognition, 28 (1), 3–71.
Franklin, S., Strain, S. Snaider, J., McCall, R., & Faghihi, U. (2012). Global work-
space theory, its LIDA model and the underlying neuroscience. Biologically Inspired
Cognitive Architectures, 1 , 32–43.
Fujii, N., & Graybiel, A. M. (2003). Representation of action seq uence boundaries
by macaque prefrontal cortical neurons. Science, 301 (5637), 1246–1249.
Fujii, N., & Graybiel, A. M. (2005). Time-varying covariance of ne ural activities
recorded in striatum and frontal cortex as monkeys perform sequential-saccade
tasks. Proceedings of the National Academy of Sciences of the United States of America,
102 (25), 9032–9037.


124 Gonzalo Castillo

Free download pdf