From Classical Mechanics to Quantum Field Theory

(Romina) #1
Mathematical Foundations of Quantum Mechanics 93

(c)IfA∈B(H)thenA†∈B(H)and(A†)†=A. Moreover

||A†||^2 =||A||^2 =||A†A||=||AA†||.

(d)Directly from given definition of adjoint one has, for densely defined oper-
atorsA, BonH,


A†+B†⊂(A+B)† and A†B†⊂(BA)†.

Furthermore


A†+B†=(A+B)† and A†B†=(BA)†, (2.29)

wheneverB∈B(H)andAis densely defined.
(e)From (c) and the last statement in (d) in particular, it is clear thatB(H)
is a unitalC∗-algebra with involutionB(H)A→A†∈B(H).


Definition 2.2.18 (∗-representation). IfA is a (unital)∗-algebra andH a
Hilbert space, a∗-representationonHis a∗-homomorphismπ:A→B(H)
referring to the natural (unital)∗-algebra structure ofB(H).


Exercise 2.2.19.Prove thatA†∈B(H)ifA∈B(H)and that, in this case
(A†)†=A,||A||=||A†||and||A†A||=||AA†||=||A||^2.


Solution. IfA∈B(H), for everyy∈H, the linear mapHx→〈y,Ax〉
is continuous (|〈y,Ax〉| ≤ ||y|| ||Ax|| ≤ ||y|| ||A|| ||x||) therefore Theorem 2.2.6
proves that there exists a unique zy,A ∈Hwith 〈y,Ax〉 = 〈zy,A,x〉for all
x, y ∈H.ThemapHy → zy,A is linear as consequence of the said
uniqueness and the antilinearity of the left entry of scalar product. The map
Hy→zy,Afits the definition ofA†,soitcoincideswithA†andD(A†)=H.
Since〈A†x, y〉=〈x, Ay〉forx, y∈Himplies (taking the complex conjugation)
〈y,A†x〉 = 〈Ay, x〉for x, y ∈H,wehave(A†)† = A.ToprovethatA†is
bounded, observe that||A†x||^2 =〈A†x|A†x〉=〈x|AA†x〉≤||x|| ||A||||A†x||so
that||A†x||≤||A||||x||and||A†||≤||A||.Using(A†)†=Awe have||A†||=||A||.
Regarding the last identity, it is evidently enough to prove that||A†A||=||A||^2.
First of all, ||A†A|| ≤ ||A†|| ||A||=||A||^2 ,sothat||A†A|| ≤ ||A||^2 .Onthe
other hand,||A||^2 =(sup||x||=1||Ax||)^2 =sup||x||=1||Ax||^2 =sup||x||=1〈Ax|Ax〉=


sup||x||=1〈x|A†Ax〉≤sup||x||=1||x||||A†Ax||=sup||x||=1||A†Ax||=||A†A||.We


have found that||A†A||≤||A||^2 ≤||A†A||so that||A†A||=||A||^2.

Free download pdf