242 From Classical Mechanics to Quantum Field Theory. A Tutorial
point spectrum, 105
residual spectrum, 105
standard model, 191, 209
states, 4
algebraic, 182
entangled, 13
minimal uncertainty relations, 31
mixed, 8, 10, 144
pure, 7, 9, 144
quantum - as measure, 140
quasi-classical, 31
separable, 13
space of, 7
stationary, 14
strongly continuous
one-parameter unitary group, 164
unitary representation of a Lie group,
171
superposition, 8, 22, 144
superselection
charges, 152
rules, 152
sector, 153
Symanzik, 225
symplectic
form, 6, 20, 22, 27, 52
manifold,6,7,47
transformation, 53
tangent space/bundle, 17
theorem
Bargmann criterion, 163
Bell-Kochen-Speker theorem, 143
closed graph theorem, 96
Coleman-Mermin-Wagner theorem,
224
double commutant theorem, 147
Gleason theorem, 142
GNS theorem, 184
Goldstone theorem, 224
Hellinger-Toepliz theorem, 98
Kadison theorem, 159
Nelson criterion for essentially
selfadjointness, 101
Nelson theorem, 175
Noether quantum theorem, 168
Pauli theorem, 180
spectral representation theorem for
selfadjoint operators, 118
spectral theorem for selfadjoint
operators, 114
Stone - von Neumann - Mackey
theorem, 179
Stone theorem, 166
Wick theorem, 216, 227, 232, 233
Wigner theorem, 159
topology
strong operator, 125
uniform operator, 125
weak operator, 125
two-level system, 8, 11
unitarity, 200
vacuum, 11
energy, 192, 206–210, 216, 217, 230,
231
quantum, 195, 206
vector field, 18, 19, 26
constant, 18
dilation, 18
gradient, 25
Hamiltonian, 25
von Neumann algebra, 148
center of, 152
of observables, 150
Weyl
algebra, 5
map/system, 48, 50, 52
quantization, 47
Wick theorem, 215
Wightman functions, 220, 225
Wigner, 199
map, 57, 58, 61
symmetry, 159
Wilson’s renormalization group, 190, 229