34 From Classical Mechanics to Quantum Field Theory. A Tutorial
(ii)a†acts as multiplication byz∗:
a†:f(z∗)=〈z|f〉→〈z|a†|f〉=z∗〈z|f〉=z∗f(z∗). (1.157)We leave to the reader the proof that the operators∂z∂∗,z∗are one the adjoint of
the other with respect to the measure (1.154) and that they satisfy:
[ ∂
∂z∗,z∗]=I.
We can now represent inHBFany operatorAby means of an integral repre-
sentation:
(Aψ)(z∗)=∫
dμ(z′)A(z∗,z′)ψ(z′∗), (1.158)with a kernelA(z∗,z′) given by:
A(z∗,z′)=∑∞
m,k=0Amk(z′)k
√
k!(z∗)m
√
m!=〈z|A|z′〉,Amn≡〈m|A|n〉. (1.159)To prove these relations, we notice that, for any|ψ〉=
∑∞
n=0cn|n〉∈H:ψ(z∗)=〈z|ψ〉=∑∞
n=0cn〈z|n〉=∑∞
n=0cn(√z∗)n
n!and
(Af)(z∗)=〈z|A|f〉=∑∞
n=0cn〈z|A|n〉=∑∞
n,m=0cn〈z|m〉〈m|A|n〉=
∑∞
n,m=0cnAmn(z∗)m
√
m!.
We can now use the identity
δkn=∫
dμ(z′)(z′)k
√
k!(z′∗)n
√
n!,
to write:
(Af)(z∗)=∑∞
n,m,k=0cnAmkδkn(z∗)m
√
m!=
∫
dμ(z′)∑∞
n,m,k=0cnAmk(z′)k
√
k!(z′∗)n
√
n!(z∗)m
√
m!=
∫
dμ(z′)⎡
⎣
∑∞
m,k=0Amk(z′)k
√
k!(z∗)m
√
m!⎤
⎦
(∞
∑
n=0cn(z′∗)n
√
n!)
Using such integral representation, it is very simple to calculate the trace of
an operator, since we can write:
TrH[A]=∑∞
n=0〈n|A|n〉=∫
dμ(z)∑∞
n=0〈n|A|z〉〈z|n〉=∫
dμ(z)∑∞
n=0〈z|n〉〈n|A|z〉=
∫
dμ(z)e−|z|2
〈z|(∞
∑
n=0|n〉〈n|)
A|z〉=∫
dμ(z)〈z|A|z〉.