From Classical Mechanics to Quantum Field Theory

(Romina) #1
A Short Course on Quantum Mechanics and Methods of Quantization 45

way:


〈φf|e−ı

tH
|φi〉= lim→ 0 〈φf|(e−ı

H
)M|φi〉

= lim→ 0

∫ (M∏− 1

n=1

dφ∗ndφn
N

)

e−

∑M− 1
n=1φ∗nφn〈φf|e−iH |φM− 1 〉

×〈φM− 1 |e−

ıH
|φM− 2 〉...〈φ 1 |e−

ıH
|φi〉

= lim→ 0

∫ (M∏− 1

n=1

dφ∗ndφn
N

)

e−

∑M− 1
n=1φ∗nφn

(M


n=1

〈φn|e−ı

H
|φn− 1 〉

)

= lim→ 0

∫ (M∏− 1

n=1

dφ∗ndφn
N

)

e−

∑M− 1
n=1φ∗nφne

∑M
n=1φ∗nφn−^1 e−ı

∑M
n=1H(φ∗n,φn−^1 ),

(1.218)

having set:〈φf|≡〈φM|,|φi〉≡|φ 0 〉.
To arrive at this expression we have divided the time intervaltinMintervals
of length ,insertedM−1 resolutions of the identity written in terms of coherent
states:


I=





j

dφ∗jdφj
N

e−φ

∗jφj
|φj〉〈φj|


⎠,

with


φ=

{

z∈C
ξ∈G

, N=

{

2 πi for bosons
1forfermions

.

The last line of (1.218) follows after assuming thatH=H(a†,a) is written in its
normal form so that:


〈φn|e−ı

H
|φn− 1 〉=〈φn| 1 −

ı


H(a†,a)+···|φn− 1 〉=eφ

∗nφn− 1
e−ı
H(φ∗n,φn−^1 )
,

whereH(φ∗n,φn− 1 ) has been obtained fromH=H(a†,a) by means of the substi-
tution:a†→φ∗n,a→φn.
As before, we can interpret{φn}as a discretized trajectory, so that:


φ∗n

φn−φn− 1
→φ


n(t

′)∂

∂t′φ(t

′),

H(φ∗n,φn− 1 )→H(φ∗n(t′),φn− 1 (t′)),

while



M∑− 1

n=1

φ∗nφn+

∑M

n=1

φ∗nφn− 1 −

ı


∑M

n=1

H(φ∗n,φn− 1 )

→φ∗(t)φ(t)+

ı


∫t

0

dt′

[

(i)φ∗(t′)

∂φ(t′)
∂t′

−H(φ∗(t′),φ(t′))

]

.
Free download pdf