A Short Course on Quantum Mechanics and Methods of Quantization 45way:
〈φf|e−ıtH
|φi〉= lim→ 0 〈φf|(e−ıH
)M|φi〉= lim→ 0∫ (M∏− 1
n=1dφ∗ndφn
N)
e−∑M− 1
n=1φ∗nφn〈φf|e−iH |φM− 1 〉×〈φM− 1 |e−ıH
|φM− 2 〉...〈φ 1 |e−ıH
|φi〉= lim→ 0∫ (M∏− 1
n=1dφ∗ndφn
N)
e−∑M− 1
n=1φ∗nφn(M
∏
n=1〈φn|e−ıH
|φn− 1 〉)
= lim→ 0∫ (M∏− 1
n=1dφ∗ndφn
N)
e−∑M− 1
n=1φ∗nφne∑M
n=1φ∗nφn−^1 e−ı∑M
n=1H(φ∗n,φn−^1 ),(1.218)having set:〈φf|≡〈φM|,|φi〉≡|φ 0 〉.
To arrive at this expression we have divided the time intervaltinMintervals
of length ,insertedM−1 resolutions of the identity written in terms of coherent
states:
I=∫
⎛
⎝
∏
jdφ∗jdφj
Ne−φ∗jφj
|φj〉〈φj|⎞
⎠,
with
φ={
z∈C
ξ∈G, N=
{
2 πi for bosons
1forfermions.
The last line of (1.218) follows after assuming thatH=H(a†,a) is written in its
normal form so that:
〈φn|e−ıH
|φn− 1 〉=〈φn| 1 −ı
H(a†,a)+···|φn− 1 〉=eφ∗nφn− 1
e−ı
H(φ∗n,φn−^1 )
,whereH(φ∗n,φn− 1 ) has been obtained fromH=H(a†,a) by means of the substi-
tution:a†→φ∗n,a→φn.
As before, we can interpret{φn}as a discretized trajectory, so that:
φ∗nφn−φn− 1
→φ∗
n(t′)∂
∂t′φ(t′),
H(φ∗n,φn− 1 )→H(φ∗n(t′),φn− 1 (t′)),while
−M∑− 1
n=1φ∗nφn+∑M
n=1φ∗nφn− 1 −ı
∑M
n=1H(φ∗n,φn− 1 )→φ∗(t)φ(t)+ı
∫t0dt′[
(i)φ∗(t′)∂φ(t′)
∂t′−H(φ∗(t′),φ(t′))