46 From Classical Mechanics to Quantum Field Theory. A Tutorial
Thus, in a formal way we can write:
〈φf|e−ıtH
|φi〉=∫
φ(0)=φi,φ(t)=φf[Dφ∗Dφ]eφ∗(t)φ(t)
e
ı∫ 0 tdt[iφ∗∂t∂φ′−H(φ∗,φ)]
,(1.219)where the integral in the exponential represents the so-called Schr ̈odinger La-
grangian of the classical system, which contains a kinetic term which is linear in
the first derivatives with respect to time.
We can now proceed to evaluate the (grancanonical) partition function of the
system, by recalling that[ 31 ]:
Z=Tr[
e−β(Hˆ−μNˆ)]
=
∫
dφ ̃∗dφ ̃
Ne−φ ̃∗φ ̃
〈ζφ ̃|e−β(Hˆ−μNˆ)|φ ̃〉, (1.220)with
ζ={
+1 for bosons
−1forfermions.From (1.219), puttingτ′=ıt′,β=it,=1,wehave:
〈ζφ ̃|e−β(Hˆ−μNˆ)|φ ̃〉= lim→ 0∫ M∏− 1
n=1dφ∗ndφn
Ne−i∑M− 1
n=1φ∗nφne∑M
n=1φ∗nφn×
∏M
n=1exp{− [H(φ∗n,φn− 1 )−μφ∗nφn− 1 ]}, (1.221)with the boundary conditions:
φ 0 =φ, φ ̃ ∗M=ζφ ̃∗=ζφ∗ 0. (1.222)Thus we get (as beforeζ=±1 for bosons/fermions):
Z= lim→ 0∫(∏M
n=1dφ∗ndφn
N)
exp{
−
∑M
n=1φ∗nφn−φn− 1}
×exp{
−
∑M
n=1[H(φ∗n,φn− 1 )−μφ∗nφn− 1 ]}
. (1.223)
Example 1.3.4. The 1D bosonic/fermionic harmonic oscillator.
We consider the Hamiltonian
H=Ωa†a, (1.224)so thatH(φ∗n,φn− 1 )=Ωφ∗nφn− 1. The argument in the exponential of (1.223) is
then given by:
exp⎧
⎨
⎩−
∑M
i,j=1φ∗iMijφj