From Classical Mechanics to Quantum Field Theory

(Romina) #1
A Short Course on Quantum Mechanics and Methods of Quantization 49

By Stone’s theorem[ 34 ], there exists an essentially self-adjoint generatorĜ(z):


̂W(αz)=exp

{

ıαĜ(z)/

}

, (1.239)

withĜ(αz)=αĜ(z). Thus Eq. (1.233) reads:


eıαĜ(z)/eıβĜ(z

′)/

=eıαβω(z,z

′)/

eıαĜ(z)/eıβĜ(z

′)/

, (1.240)

giving, at the infinitesimal order, the following commutation relation:
[
Ĝ(z),Ĝ(z′)


]

=−ıω(z,z′). (1.241)

Example 1.3.5. The free particle.
The simplest case we can consider is given byS=R^2 with coordinatesz=(q,p)
and the standard symplectic formω=dq∧dp,sothatω((q,p),(q′,p′)) =qp′−q′p.
In this case a Weyl system satisfies:


̂W((q,p)+(q′,p′)) =Ŵ(q,p)̂W(q′,p′)exp

{


ı
2 

(qp′−q′p)

}

. (1.242)

Now ifS 1 ={z 1 ≡(q,0)}andS 2 ={z 2 ≡(0,p)}, one has:


̂W(q,p)=̂W((q,0) + (0,p)) =̂W(q,0)̂W(0,p)exp{−ıqp/ 2 }. (1.243)

Defining the infinitesimal generators as:


Û(q)=̂W(q,0)≡exp

{

ıqP/̂

}

V̂(p)=̂W(0,p)≡exp

{

ıpQ/̂

}, (1.244)

one immediately finds that Eq. (1.241) gives the standard CCR:
[
Q,̂P̂


]

=ıI. (1.245)

Thus, using the already-mentioned Baker-Campbell-Hausdorff formula, it is
straightforward to see that the Weyl system is given by the map:


Ŵ(q,p)=exp

{

ı

(

qP̂+pQ̂

)

/

}

. (1.246)

To construct a concrete realization of this Weyl system, we can consider wave
functionsψ∈L^2 (R,dx) and define the families of operators (1.244) via:
(
Û(q)ψ


)

(x)=ψ(x+q)
(
V̂(p)ψ

)

(x)=exp{ıpx/}ψ(x)

, (1.247)

which are one-parameter strongly continuous groups of unitary transformations
satisfying:
(
Û(q)V̂(p)ψ


)

(x)=exp{ıqp/}

(

V̂(p)Û(q)ψ

)

(x). (1.248)
Free download pdf