Science 6.03.2020

(Nancy Kaufman) #1

occur at frequencies lying within the allowed
bands of the host. The recognition of reso-
nant modes was delayed by their peculiar
characteristics, where the vibrational ampli-
tudedoesnotvanishfarfromthedefect,ex-
tending instead over the entire crystal ( 28 ).
Furthermore, experimental observations of
these effects have, thus far, been limited to
indirect fingerprints, often at the macroscopic
scale. Volgmannet al.( 13 ) used scanning probe
microscope (SPM)–IETS to detect a local energy-
dependent increase in phonon DOS on a Ag (100)
surface, which they attributed to a substitu-
tional Cu atom. However, the surface nature
of these experiments and the lack of more
direct visualization means precluded an un-
ambiguous interpretation.
In contrast, the ability demonstrated in this
work to directly measure, at the atomic scale,
the localized component of the vibrational
signature of a single impurity atom within a
solid, and to match the observed spectral fine
structure to theoretically predicted modes,
realizes the potential of phonon spectroscopy
intheSTEM.TheSTEM-EELStechnique,char-
acterized by single-atom defect sensitivity com-
bined with isotope selectivity ( 17 ) and the ability
to operate at cryogenic temperatures ( 29 ), now
enables potential experiments where a single
functionalizing isotope is fingerprinted at the
atomic scale through its vibrational signature.
The approach should be applicable to three-


dimensional structures, although challenges
will arise from the complexity of the compu-
tational work necessary to inform these ex-
periments. Nevertheless, this opens up a path
to further applications in solid-state science,
where the electron beam of the STEM can be
used to assemble functional devices atom by
atom ( 30 ) and to spectroscopically probe the
resulting lattice dynamics and their coupling
with other quasiparticles.

REFERENCES AND NOTES


  1. W. R. Hamilton,Philos. Trans. R. Soc. 124 , 247–308 (1834).

  2. J. W. Strutt,The Theory of Sound(Cambridge Univ. Press,
    1887).

  3. I. M. Lifšic,Nuovo Cim. 3 , 716–734 (1956).

  4. A. S. Barker, A. J. Sievers,Rev. Mod. Phys. 47 ,S1–S179 (1975).

  5. D. J. Voneshenet al.,Nat. Mater. 12 , 1028–1032 (2013).

  6. C. Brunet al.,Nat. Phys. 10 , 444–450 (2014).

  7. M. Shaoet al.,Nat. Commun. 5 , 3180 (2014).

  8. R. F. Wallis, Ed.,Localized Excitations in Solids(Springer, 1968).

  9. O. L. Krivaneket al.,Nature 514 , 209–212 (2014).

  10. T. Miyataet al.,Microscopy 63 , 377–382 (2014).

  11. P. Z. El-Khouryet al.,Adv. Phys. X. 1 ,35–54 (2016).

  12. H. Gawronski, M. Mehlhorn, K. Morgenstern,Science 319 ,
    930 – 933 (2008).

  13. K. Volgmannet al.,Nat. Commun. 5 , 5089 (2014).

  14. J. C. Idroboet al.,Phys. Rev. Lett. 120 , 095901 (2018).

  15. M. J. Lagos, A. Trügler, U. Hohenester, P. E. Batson,Nature
    543 , 529–532 (2017).

  16. F. S. Hageet al.,Sci. Adv. 4 , eaar7495 (2018).
    17.J. A. Hachtelet al.,Science 363 , 525–528 (2019).

  17. K. Suenaga, M. Koshino,Nature 468 , 1088–1090 (2010).

  18. W. Zhouet al.,Nature Nanotech. 7 , 161–165 (2012).

  19. F. S. Hageet al.,ACS Nano 12 , 1837–1848 (2018).

  20. T. C. Lovejoyet al.,Appl. Phys. Lett. 100 , 154101 (2012).

  21. F. S. Hage, D. M. Kepaptsoglou, Q. M. Ramasse, L. J. Allen,
    Phys. Rev. Lett. 122 , 016103 (2019).
    23. C. Dwyeret al.,Phys. Rev. Lett. 117 , 256101 (2016).
    24. R. Sengaet al.,Nature 573 , 247–250 (2019).
    25. Q. M. Ramasseet al.,Nano Lett. 13 , 4989–4995 (2013).
    26. P. Giannozziet al.,J. Phys. Condens. Matter 21 , 395502
    (2009).
    27. E. W. Montroll, R. B. Potts,Phys. Rev. 100 , 525– 543
    (1955).
    28. R. Brout, W. Visscher,Phys. Rev. Lett. 9 ,54–55 (1962).
    29. M. T. Hotzet al.,Microsc. Microanal. 24 , 1132–1133 (2018).
    30. T. Susiet al.,2D Mater. 4 , 042004 (2017).


ACKNOWLEDGMENTS
The authors gratefully acknowledge R. Brydson, M. Bugnet, and
E. Prestat for useful discussions.Funding:SuperSTEM is the UK
National Research Facility for Advanced Electron Microscopy,
supported by the Engineering and Physical Sciences Research
Council (EPSRC). This work was granted access to the
High-Performance Computing resources of the Institut du
Développement et des Ressources en Informatique Scientifique
(IDRIS) under allocation 2019-A0060910820, attributed by the
Grand Equipement National de Calcul Intensif (GENCI).Author
contributions:Q.M.R. conceived the project. F.S.H., Q.M.R., and
D.M.K. designed and carried out the experiments and interpreted
the data. G.R. and M.L. carried out and interpreted the theoretical
calculations. All authors contributed to the preparation of the
manuscript.Competing interests:The authors declare no
competing interests.Data and materials availability:All data
necessary for evaluating the conclusions of the paper are included
in the main text and/or the supplementary materials. Data related
to those presented here are available from the authors upon
reasonable request.

SUPPLEMENTARY MATERIALS
science.sciencemag.org/content/367/6482/1124/suppl/DC1
Materials and Methods
Supplementary Text
Figs. S1 to S12
References ( 31 – 43 )
7 November 2019; accepted 3 February 2020
10.1126/science.aba1136

Hageet al.,Science 367 , 1124–1127 (2020) 6 March 2020 4of4


RESEARCH | REPORT

Free download pdf