QMGreensite_merged

(bbancia) #1

8 CHAPTER1. THECLASSICALSTATE


thistrajectoryexactly,butwewouldliketodevelopamethodwhichcanbeapplied
toaparticlemovinginanypotentialfieldV(x). SoletusbeginwithNewton’slaw
F=ma,whichisactuallyasecond-orderdifferentialequation


m

d^2 x
dt^2

=−


dV
dx

(1.1)


Itisusefultoreexpressthissecond-orderequationasapairoffirst-orderequations


dx
dt

=


p
m
dp
dt

= −


dV
dx

(1.2)


wheremisthemassandpisthemomentumofthebaseball. Wewanttofind the
solutionoftheseequationssuchthatx(t 0 )=Xinandx(t 0 +∆t)=Xf,whereXin
andXf are,respectively,the(initial)heightofyourhandwhenthebaseballleaves
it,andthe(final)heightofyourhandwhenyoucatchtheball.^1
Withtheadventofthecomputer,itisofteneasiertosolveequationsofmotion
numerically,ratherthanstruggletofindananalyticsolutionwhichmayormaynot
exist(particularlywhentheequationsarenon-linear). Althoughtheobject ofthis
sectionisnotreallytodevelopnumericalmethodsforsolvingproblemsinbaseball,
wewill,forthemoment,proceedasthoughitwere. Tomaketheproblemsuitable
foracomputer,dividethetimeinterval∆tintoN smallertimeintervalsofduration
!=∆t/N,anddenote,forn= 0 , 1 ,...,N,


tn≡t 0 +n!,
xn=x(tn), pn=p(tn),

x 0 =Xin, xN=Xf

(1.3)


Anapproximationtoacontinuoustrajectoryx(t)isgivenbythesetofpoints{xn}
connected bystraightlines, asshowninFig. [1.1]. Wecan likewise approximate
derivativesbyfinitedifferences,i.e.
(
dx
dt


)

t=tn


x(tn+1)−x(tn)
!

=


xn+1−xn
!
(
dp
dt

)

t=tn


p(tn+1)−p(tn)
!

=


pn+1−pn
!
(
d^2 x
dt^2

)

t=tn


1


!





(
dx
dt

)

t=tn


(
dx
dt

)

t=tn− 1





1


!


{
(xn+1−xn)
!


(xn−xn− 1 )
!

}
(1.4)

(^1) Wewillallowthesepositionstobedifferent,ingeneral,sinceyoumightmoveyourhandto
anotherpositionwhiletheballisinflight.

Free download pdf