QMGreensite_merged

(bbancia) #1

10 CHAPTER1. THECLASSICALSTATE


sothatF=macanbeinterpretedasaconditionthatacertainfunctionofxnshould
bestationary.Letusthereforeintroduceaveryimportantexpression,crucialinboth
classicalandquantumphysics, whichisknownas the”action”ofthe trajectory.
Theactionisafunctionwhichdependsonallthepoints{xn}, n= 0 , 1 ,...,N ofthe
trajectory,andinthiscaseitis


S[{xi}]≡

N∑− 1

n=0

[
1
2

m

(xn+1−xn)^2
!

−!V(xn)

]
(1.9)

ThenNewton’sLawF=macanberestatedastheconditionthattheactionfunc-
tionalS[{xi}]isstationarywithrespecttovariationofanyofthexi(exceptforthe
endpointsx 0 andxN,whichareheldfixed).Inotherwords


d
dxk

S[{xi}] =

d
dxk

N∑− 1

n=0

[
1
2

m

(xn+1−xn)^2
!

−!V(xn)

]

=


d
dxk

{
1
2

m

(xk+1−xk)^2
!

+


1


2


m

(xk−xk− 1 )^2
!

−!V(xk)

}

= !{−ma(tk)+F(tk)}
= 0 for k= 1 , 2 ,...,N− 1 (1.10)

ThissetofconditionsisknownasthePrincipleofLeastAction.Itistheprinciple
that theaction S isstationaryat any trajectory {xn} satisfyingthe equationsof
motionF=ma,eq. (1.7),ateverytime{tn}.
Theprocedureforsolvingforthetrajectoryofabaseballbycomputeristopro-
gramthecomputertofindthesetofpoints{xn}whichminimizesthequantity


Q=



k

(
∂S
∂xk

) 2
(1.11)

TheminimumisobtainedatQ=0,whereSisstationary.Thissetofpoints,joined
bystraight-linesegments,givesustheapproximatetrajectoryofthebaseball.


Problem:Doitonacomputerbybothmethods.

Free download pdf