QMGreensite_merged

(bbancia) #1

12 CHAPTER1. THECLASSICALSTATE


1.2 Euler-Lagrange and Hamilton’s Equations


Inbrief,theEuler-Lagrangeequationsarethesecond-orderformoftheequationsof
motion(1.1),whileHamilton’sequationsarethefirst-orderform(1.2).Ineitherform,
theequationsofmotioncanberegardedasaconsequenceofthePrincipleofLeast
Action. Wewillnowre-writethoseequationsinaverygeneralway,whichcan be
appliedtoanymechanicalsystem,includingthosewhicharemuchmorecomplicated
thanabaseball.
Webeginbywriting


S[{xi}]=

N∑− 1

n=0

!L[xn,x ̇n] (1.12)

where


L[xn,x ̇n]=

1


2


mx ̇^2 n−V(xn) (1.13)

andwhere


x ̇n≡

xn+1−xn
!

(1.14)


L[xn,x ̇n]isknownastheLagrangianfunction. Thentheprincipleofleastaction
requiresthat,foreachk, 1 ≤k≤N−1,


0 =


d
dxk

S[{xi}]=

N∑− 1

n=0

!


d
dxk

L[xn,x ̇n]

=!



∂xk

L[xk,x ̇k]+

N∑− 1

n=0

!


∂L[xn,x ̇n]
∂x ̇n

dx ̇n
dxk

(1.15)


and,since


dx ̇n
dxk

=






1
! n=k−^1
−^1! n=k
0 otherwise

(1.16)


thisbecomes



∂xk

L[xk,x ̇k]−

1


!


{

∂x ̇k

L[xk,x ̇k]−


∂x ̇k− 1

L[xk− 1 ,x ̇k− 1 ]

}
= 0 (1.17)

Recallingthatxn=x(tn),thislastequationcanbewritten
(
∂L[x,x ̇]
∂x


)

t=tn


1


!


{(
∂L[x,x ̇]
∂x ̇

)

t=tn


(
∂L[x,x ̇]
∂x ̇

)

t=tn−!

}
= 0 (1.18)

ThisistheEuler-Lagrangeequationforthebaseball. Itbecomessimplerwhenwe
takethe!→ 0 limit(the”continuum”limit).Inthatlimit,wehave


x ̇n=

xn+1−xn
!

→ x ̇(t)=

dx
dt

S=

N∑− 1

n=1

!L[xn,x ̇n] → S=

∫t 0 +∆t

t 0

dtL[x(t),x ̇(t)] (1.19)
Free download pdf