QMGreensite_merged

(bbancia) #1

1.2. EULER-LAGRANGEANDHAMILTON’SEQUATIONS 13


wheretheLagrangianfunctionforthebaseballis


L[x(t),x ̇(t)]=

1


2


mx ̇^2 (t)−V[x(t)] (1.20)

andtheEuler-Lagrangeequation,inthecontinuumlimit,becomes


∂L
∂x(t)


d
dt

∂L


∂x ̇(t)

= 0 (1.21)


FortheLagrangianofthebaseball,eq. (1.20),therelevantpartialderivativesare


∂L
∂x(t)

= −


dV[x(t)]
dx(t)
∂L
∂x ̇(t)

= mx ̇(t) (1.22)

which,whensubstitutedintoeq. (1.21)give


m

∂^2 x
∂t^2

+


dV
dx

= 0 (1.23)


ThisissimplyNewton’slawF=ma,inthesecond-orderformofeq.(1.1).
We now wantto rewrite the Euler-Lagrange equationin first-orderform. Of
course, we already know the answer, whichis eq. (1.2), but letus ”forget” this
answerforamoment,inordertointroduceaverygeneralmethod. Thereasonthe
Euler-Lagrangeequationissecond-orderinthetimederivativesisthat∂L/∂x ̇isfirst-
orderinthetimederivative. Soletusdefinethemomentumcorrespondingtothe
coordinatextobe


p≡

∂L


∂x ̇

(1.24)


Thisgivespas afunctionof xandx ̇,but, alternatively, wecan solve forx ̇ as a
functionofxandp,i.e.
x ̇=x ̇(x,p) (1.25)


Next,weintroducetheHamiltonianfunction


H[p,x]=px ̇(x,p)−L[x,x ̇(x,p)] (1.26)

Sincex ̇isafunctionofxandp,Hisalsoafunctionofxandp.
ThereasonforintroducingtheHamiltonianisthatits firstderivativeswithre-
specttoxandphavearemarkableproperty;namely,onatrajectorysatisfyingthe
Euler-Lagrangeequations,thexandpderivativesofHareproportionaltothetime-
derivativesofpandx.Toseethis,firstdifferentiatetheHamiltonianwithrespectto
p,


∂H
∂p

= x ̇+p

∂x ̇(x,p)
∂p


∂L


∂x ̇

∂x ̇(p,x)
∂p
= x ̇ (1.27)
Free download pdf