QMGreensite_merged

(bbancia) #1

14 CHAPTER1. THECLASSICALSTATE


wherewehaveapplied(1.24).Next,differentiatingHwithrespecttox,


∂H
∂x

= p

∂x ̇(x,p)
∂x


∂L


∂x


∂L


∂x ̇

∂x ̇(p,x)
∂x
= −

∂L


∂x

(1.28)


UsingtheEuler-Lagrangeequation(1.21)(andthisiswheretheequationsofmotion
enter),wefind


∂H
∂x

= −


d
dt

∂L


∂x ̇
= −

dp
dt

(1.29)


Thus,withthehelpoftheHamiltonianfunction,wehaverewrittenthesingle2nd
orderEuler-Lagrangeequation(1.21)asapairof1storderdifferentialequations


dx
dt

=


∂H


∂p
dp
dt

= −


∂H


∂x

(1.30)


whichareknownasHamilton’sEquations.
Forabaseball,theLagrangianisgivenbyeq. (1.20),andthereforethemomentum
is


p=

∂L


∂x ̇

=mx ̇ (1.31)

Thisisinvertedtogive


x ̇=x ̇(p,x)=

p
m

(1.32)


andtheHamiltonianis


H = px ̇(x,p)−L[x,x ̇(x,p)]

= p

p
m


[
1
2

m(

p
m

)^2 −V(x)

]

=


p^2
2 m

+V(x) (1.33)

Note that the Hamiltonian forthe baseball issimply the kinetic energy plus the
potentialenergy; i.e. theHamiltonian isanexpressionforthe totalenergyofthe
baseball.SubstitutingHintoHamilton’sequations,onefinds


dx
dt

=



∂p

[
p^2
2 m

+V(x)

]
=

p
m
dp
dt

= −



∂x

[
p^2
2 m

+V(x)

]
=−

dV
dx

(1.34)


whichissimplythefirst-orderformofNewton’sLaw(1.2).

Free download pdf