QMGreensite_merged

(bbancia) #1

1.3. CLASSICALMECHANICSINANUTSHELL 15


1.3 Classical Mechanicsin a Nutshell


AllthemachineryoftheLeastActionPrinciple,theLagrangianFunction,andHamil-
ton’sequations,isoverkillinthecaseofabaseball.Inthatcase,weknewtheequation
ofmotionfromthebeginning. Butformoreinvolveddynamicalsystems,involving,
say,wheels,springs,levers,andpendulums,allcoupledtogetherinsomecomplicated
way,theequationsofmotionareoftenfarfromobvious,andwhatisneededissome
systematicwaytoderivethem.
Foranymechanicalsystem,thegeneralizedcoordinates{qi}areasetofvari-
ablesneededtodescribetheconfigurationofthesystematagiventime.Thesecould
beasetofcartesian coordinatesofanumberofdifferentparticles, ortheangular
displacementofapendulum,orthedisplacementofaspringfromequilibrium,orall
oftheabove. Thedynamicsofthesystem,intermsofthesecoordinates,isgivenbya
LagrangianfunctionL,whichdependsonthegeneralizedcoordinates{qi}andtheir
firsttime-derivatives{q ̇i}.Normally,innon-relativisticmechanics,wefirstspecify



  1. TheLagrangian


L[{qiq ̇i}]=KineticEnergy−PotentialEnergy (1.35)

Onethendefines



  1. TheAction
    S=



dtL[{qi},{q ̇i}] (1.36)

FromtheLeastActionPrinciple,followingamethodsimilartotheoneweusedfor
thebaseball(seeProblem4),wederive



  1. TheEuler-LagrangeEquations


∂L
∂qi


d
dt

∂L


∂q ̇i

= 0 (1.37)


Thesearethe2nd-orderequationsofmotion. Togoto1st-orderform,firstdefine



  1. TheGeneralizedMomenta


pi≡

∂L


∂q ̇i

(1.38)


whichcanbeinvertedtogivethetime-derivativesq ̇iofthegeneralizedcoordinates
intermsofthegeneralizedcoordinatesandmomenta


q ̇i=q ̇i[{qn,pn}] (1.39)

Viewingq ̇asafunctionofpandq,onethendefines

Free download pdf