QMGreensite_merged

(bbancia) #1

4.3. THEDIRACDELTAFUNCTION 53


Itisreasonabletoaskwhyoneshouldgotothetroubleofintroducingsequences.
WhynottaketheL→∞limitrightaway,ineq. (4.40),anddefine


δ(x−y)=

{
∞ if x=y
0 if x+=y

(4.42)


inanalogytotheKroneckerdeltaδij?TheansweristhattheDiracdeltafunctionis
not,strictlyspeaking,afunction,anymorethan∞isanumber,andtheintegralof
therighthandsideof(4.42)isill-defined.Ifonetreats∞asanordinarynumber,it
iseasytoproducecontradictions,e.g.


1 ×∞= 2 ×∞ =⇒ 1 = 2 (4.43)

Instead,onemustthinkof∞asthelimitofasequenceofnumbers,butwhichisnot
itselfanumber.Therearemanydifferentsequenceswhichcanbeused,e.g.


1 , 2 , 3 , 4 , 5 ,....
or 2 , 4 , 6 , 8 , 10 ,....
or 1 , 4 , 9 , 16 , 25 ,... (4.44)

allofwhichhave∞astheirlimit. Similarly,therearemanydifferentsequencesof
functionstendingtothe samelimit,whichisnotafunctionintheordinarysense.
Suchlimitsareknownas”generalizedfunctions,”ofwhichtheDiracdeltafunction
isoneveryimportantexample.
Letuscheckthat(4.40)and(4.41)satisfythedefiningproperty(4.39)fordelta
sequences. Forthesequenceofgaussians(4.40)


lim
L→∞

∫∞

−∞

dy


L
π

e−L(y−x)

2
f(y)

= lim
L→∞

∫∞

−∞

dz


L
π

e−Lz

2
f(x+z)

= lim
L→∞

∫∞

−∞

dz


L
π

e−Lz

2

[
f(x)+

df
dx

z+

1


2


d^2 f
dx^2

z^2 +...

]

= lim
L→∞


L
π

[√
π
L

f(x)+ 0 +

1


4 L


√π

L

d^2 f
dx^2

+...


]

= f(x) (4.45)

wherewehavechangedvariablesz =y−x, expandedf(x+z)inaTaylorseries
aroundthepointx,andusedthestandardformulasofgaussianintegration:
∫∞


−∞

dze−cz
2
=


π

∫ c

−∞

dzze−cz

2
= 0
∫∞

−∞

dzz^2 e−cz
2
=

1


2 c


π
c

(4.46)

Free download pdf