QMGreensite_merged

(bbancia) #1

5.2. THESCHRODINGERWAVEEQUATION 63


Equation(5.8) shouldbeunderstoodas aprediction, giventhequantumstate
ψ(x,t),fortheexpectationvalueofmomentum. Next,takingthetime-derivativeof


,soastocomparetothesecondequationof(5.3),

∂t<p> = ∂t


dxψ∗

(
−i ̄h


∂x

)
ψ

=


(
ih ̄
2 m

)
(−i ̄h)


dx{−(

∂^2


∂x^2

ψ∗)


∂x

ψ+ψ∗


∂x

∂^2


∂x^2

ψ}

=


(
ih ̄
2 m

)
(−i ̄h)


dxψ∗{−

∂^2


∂x^2


∂x

ψ+


∂x

∂^2


∂x^2

ψ}

= 0 (5.9)

weconcludethat∂t

=0,whichagreeswithEhrenfest’sprincipleforthecase
thatthepotentialV =0.
InthecasethatV +=0, theequationfordeBrogliewavesdoesnotsatisfythe
secondof equations(5.3). SothedeBrogliewaveequationmustbegeneralizedso
astoagreewithEhrenfest’sprincipleforanypotentialV(x).Thisgeneralizedwave
equationwasfoundbySchrodinger;itisascentraltoquantummechanicsasF=ma
istoclassicalmechanics.


5.2 The Schrodinger Wave Equation


ThequantummechanicallawofmotionfoundbySchrodinger,describingaparticle
ofmassmmovinginonedimensioninanarbitrarypotentialV(x),isknownas


TheSchrodingerWaveEquation


ih ̄


∂ψ


∂t


= −


h ̄


2


2 m


∂^2


∂x^2


ψ+V(x)ψ (5.10)


Itiseasytoverifythatthisequationdoes,infact,satisfyEhrenfest’sprinciple. Once
again,startingwiththefirstoftheEhrenfestequations(5.3),


<p> = m∂t<x>

= m


dx

{
∂ψ
∂t


xψ+ψ∗x

∂ψ
∂t

}
(5.11)
Free download pdf