QMGreensite_merged

(bbancia) #1

66 CHAPTER5. DYNAMICSOFTHEQUANTUMSTATE


Finally, weneedtochecktheconsistency oftheSchrodingerequationwiththe
BornInterpretation. AccordingtotheBornInterpretation,atanyinstantoftimet,


<ψ|ψ>=


dxψ∗(x,t)ψ(x,t)= 1 (5.22)

foraparticlemovinginonedimension. Nowsupposethisnormalizationconditionis
trueatsometimet 0 ,andandthewavefunctionevolvesaccordingtotheSchrodinger
equation. Willthisconditionalsobevalidatlatertimest>t 0? Tocheckthis,we
differentiate<ψ|ψ>withrespecttotime


∂t<ψ|ψ> =


dx{(∂tψ∗)ψ+ψ∗(∂tψ)}

=



dx

{(

i ̄h
2 m

∂x^2 ψ∗+

i
̄h

Vψ∗

)
ψ+ψ∗

(
i ̄h
2 m

∂^2 xψ−

i
̄h


)}

=


i ̄h
2 m


dx

{
−(∂x^2 ψ∗)ψ+ψ∗∂x^2 ψ

}

= 0 (5.23)


wherewehaveonceagainusedtheintegrationbypartsformula(5.7). Thisresult
meansthat the normofthe wavefunction isconstantintime, which isknownas
”ConservationofProbability”. Theinnerproduct<ψ|ψ>isthetotalprobabil-
itytofindtheparticleanywhereinspace. Ifthenormisconstant,and<ψ|ψ>= 1
atsometimet=t 0 ,then<ψ|ψ>= 1 atanyanylatertime.
TheSchrodingerequationformotionin3-dimensionsisastraightforwardgener-
alizationoftheone-dimensionalcase:


i ̄h

∂ψ
∂t

=


− ̄h^2
2 m

∇^2 ψ+V(x,y,z)ψ (5.24)

Inthiscase,thegeneralizedcoordinatesareq^1 =x, q^2 =y, q^3 =z,andthefirstof
theEhrenfestequations(5.2)tellsus


<px>=


d^3 xψ∗(x,y,z,t)p ̃xψ(x,y,z,t)

<py>=


d^3 xψ∗(x,y,z,t)p ̃yψ(x,y,z,t)

<pz>=


d^3 xψ∗(x,y,z,t)p ̃zψ(x,y,z,t) (5.25)

where


p ̃x ≡ −i ̄h


∂x
p ̃y ≡ −i ̄h


∂y

p ̃z ≡ −i ̄h


∂z

(5.26)

Free download pdf