QMGreensite_merged

(bbancia) #1

5.5. GAUSSIANWAVEPACKETS 71


Wenowhaveaprescription,giventhewavefunctionatanyinitialtimet=0,for
findingthewavefunctionatanylatertime:Fromφ(x)=ψ(x,0),computetheinverse
Fouriertransformf(p)using(5.54),theninsertf(p)intotherhsofeq. (5.44). The
integralofeq. (5.44)willthengivethewavefunctionψ(x,t)atanylatertime.


5.5 Gaussian Wavepackets


Awavefunctionoftheform


φ(x)=NδL(x) (5.55)

goestozero,asL→∞,everywhereexceptatthepointx=0.Attheotherextreme,
aplanewave


φ(x)=Neip^0 x/ ̄h (5.56)

hasaconstantmodulus|φ|=N ateverypointalongtheentireline−∞<x<∞.
Awavefunctionwhichinterpolatesbetweenthesetwoextremecasesisthe”gaussian
wavepacket”


φ(x)=Ne−x

(^2) / 2 a 2
eip^0 x/ ̄h (5.57)
inwhichagaussiandampingfactorisusedtomodulateaplanewave. Asa→0,
atfixedp 0 , thiswavefunctionisproportionaltoδL(x)(whereL= 1 / 2 a^2 ),while as
a→∞,φ(x)approachesaplanewave.
Gaussianwavepackets provideaveryusefulexampleofhowthewavefunctionof
afreeparticleevolvesintime. Assumethattheinitialwavefunctionψ(x,0)hasthe
formofthegaussianwavepacket(5.57),withsomefixedvalueoftheconstanta.The
firsttaskisto”normalize”thewavefunction,whichmeans:choosetheconstantN
in(5.57)sothatthenormalizationcondition

dxψ∗(x,t)ψ(x,t)= 1 (5.58)
isfulfilledatt= 0 (whichimpliesthatitwillbefulfilledforallt,byconservationof
probability).Theconditionis


1 =



dxψ∗(x,0)ψ(x,0)

= N^2


dxe−x

(^2) /a 2


= N^2



πa^2 (5.59)

Therefore


N=

(
1
πa^2

) 1 / 4
(5.60)
Free download pdf