QMGreensite_merged

(bbancia) #1

5.5. GAUSSIANWAVEPACKETS 73


thisbecomes
f(p)=(4πa^2 )^1 /^4 e−a


(^2) (p−p 0 ) (^2) /2 ̄h 2
(5.67)
Then,substitutingf(p)into(5.44),wefindthewavefunctionatanylatertimet
ψ(x,t) = (4πa^2 )^1 /^4
∫ dp
2 π ̄h
e−a
(^2) (p−p 0 ) (^2) /2 ̄h 2
exp
[
i(px−
p^2
2 m
t)/ ̄h
]


=


(4πa^2 )^1 /^4
2 π ̄h


dq exp

[

a^2
2 ̄h^2

q^2 +i

q+p 0
h ̄

x−i

(q+p 0 )^2
2 m ̄h

t

]

=


(4πa^2 )^1 /^4
2 π ̄h

exp[i(p 0 x−

p^20
2 m

t)/ ̄h]

×



dq exp

[

(
a^2
2 ̄h^2

+


it
2 m ̄h

)
q^2 +i

(
x
̄h


p 0 t
m ̄h

)
q

]

=


(4πa^2 )^1 /^4
2 π ̄h


 π
a^2
2 ̄h^2 +

it
2 m ̄h



1 / 2
exp

{

(x−v 0 t)^2
2(a^2 +i ̄ht/m)

}
ei(p^0 x−

p^20
2 mt)/ ̄h(5.68)

where
v 0 ≡


p 0
m

(5.69)


Although(5.68)lookslikeacomplicatedexpression,itsmodulusisverysimple:


|ψ|^2 = ψ∗(x,t)ψ(x,t)

=

1



πa^2 (t)

exp

[

(x−v 0 t)^2
a^2 (t)

]
(5.70)

wherewehavedefined


a(t)≡


a^2 +

̄h^2
m^2 a^2

t^2 (5.71)

Notethatthemodulusofthewavefunctionremainsagaussianatalltimes,butthe
width a(t)of the gaussianincreases, i.e. the wavefunction ”spreadsout”as time
passes.
Wecanthencalculateand∆xatanytimet>0:


<x> =

1



πa^2 (t)


dxxexp

[

(x−v 0 t)^2
a^2 (t)

]

=


1



πa^2 (t)


dx′(x′+v 0 t)exp

[

x′^2
a^2 (t)

]

= v 0 t (5.72)

andalso


∆x^2 = <(x−<x>)^2 >=<(x−v 0 t)^2 >
Free download pdf