QMGreensite_merged

(bbancia) #1

74 CHAPTER5. DYNAMICSOFTHEQUANTUMSTATE


=


1



πa^2 (t)


dx(x−v 0 t)^2 exp

[

(x−v 0 t)^2
a^2 (t)

]

=


1



πa^2 (t)


dx′x′^2 exp

[

x′^2
a^2 (t)

]

=


1


2


a^2 (t) (5.73)

sothat


∆x=

a(t)

2

=


1



2



a^2 +

̄h^2
m^2 a^2

t^2 (5.74)

Tocompute

,wemakeuseagainoftherepresentation(5.44)


<p> =


dxψ∗(x,t)

(
−i ̄h


∂x

)
ψ(x,t)

=



dx

{∫
dp 1
2 π ̄h

f(p 1 )ei(p^1 x−Ep^1 t)/ ̄h

}∗(
−i ̄h


∂x

)∫
dp 2
2 πh ̄

f(p 2 )ei(p^2 x−Ep^2 t)/ ̄h

=


∫ dp
1
2 π ̄h

f∗(p 1 )eiEp^1 t/ ̄h

∫ dp
2
2 π ̄h

p 2 f(p 2 )e−iEp^2 t/ ̄h


dxei(p^2 −p^1 )x/ ̄h

=

∫ dp
1
2 π ̄h

f∗(p 1 )eiEp^1 t/ ̄h

∫ dp
2
2 π ̄h

p 2 f(p 2 )e−iEp^2 t/ ̄h 2 πh ̄δ(p 1 −p 2 )

=


∫ dp

2 π ̄h

pf∗(p)f(p) (5.75)

Notethatthetime-dependencehasvanishedcompletelyfromthisequation.Itfollows
that


=

0 =p 0 (5.76)

andtheexpectationvaluesofpositionandmomentumtogetherobey


<x>t = <x> 0 +

<p> 0
m

t

<p>t = p 0 (5.77)

Withthe ”<>”signsremoved,these aretheequations ofaclassicaltrajectoryin
phasespaceforafreeparticleofmassm.
Ontheotherhand,thepositionaluncertainty ∆xofthequantumstate,which
isproportionaltothewidtha(t)ofthegaussian,increasesintime;thisisknownas
the”spreadingofthewavepacket”. AsnotedinLecture3,oneofthereasonsthat
the electroncannot beregarded as being literallyawaveisthat its wavefunction
expandstomacroscopicsizequiterapidly,anditisquitecertainthatelectronsare
notmacroscopicobjects. Letusconsiderthe timet 2 a thatittakesafreeparticle
wavefunctiontodoubleinsize(a(t)= 2 a(0)):


t 2 a=


3


ma^2
̄h

(5.78)

Free download pdf