QMGreensite_merged

(bbancia) #1

5.7. THEPARTICLEINACLOSEDTUBE 83


Therealpartof ψ(x,0) issketched inFig. [5.4]. Then thecoefficientsanare
easilycalculated:


an =


2
L

∫x 0 +a

x 0 −a

dxeipx/ ̄hsin[

nπx
L

]


=



2
L



expi

[p
̄h−


L

]
x 0
p
̄h−


L

cos

[
p
̄h



L

]
a


expi

[
p
̄h+


L

]
x 0
p
̄h+


L

cos

[p

̄h

+



L

]
a


 (5.133)

Nowcollectingformulas:


ψ(x,t) =


2
L

∑∞

n=1

ansin[

nπx
L

]e−iEnt/ ̄h

<x> =

∑∞

i=1

∑∞

j=1

a∗iajei(Ei−Ej)t/ ̄hXij

<p> =

∑∞

i=1

∑∞

j=1

a∗iajei(Ei−Ej)t/ ̄hPij

En = n^2

π^2 ̄h^2
2 mL^2

(5.134)


Fromthissetofequationswecancalculateψ(x,t), ,

atanytimetto
anydesiredaccuracy,bykeepingasufficientlylargenumberoftermsinthesums.
Nowletspluginsome numbers. Supposetheparticle isanelectron, p 0 isthe
momentumcorrespondingtoanenergyof 10 eV,


p 0 = 1. 7 × 10 −^24 kg-m/s (5.135)

andalsochoose


a = 10 −^8 m
L = 10 −^7 m (5.136)

Thecorrespondingwavefunction,calculatedatvariousinstants,isshowninFig.[5.5].
Theexpectationvaluesofpositionandmomentumareplottedasafunctionoftime
inFig.[5.6].Theseshouldbecomparedtothecorrespondingfiguresforx(t)andp(t)
foraclassicalpointlikeelectronofmomentump 0 ,initiallylocatedatthepointx 0.
Notethatthewavefunctionfortheelectron”bounces”fromoneendofthewalltothe
otherwhileslowlyspreadingout.Theexpectationvaluesofpositionandmomentum,
asexpected,closelyparalleltheclassicalbehavior.

Free download pdf