QMGreensite_merged

(bbancia) #1

86 CHAPTER6. ENERGYANDUNCERTAINTY


6.1 The Expectation Value of p
n


AccordingtotheBornInterpretation,theexpectationvalueofanyfunctionF(x)of
positionisgivenby


<F(x)> =


F(x)Pdx(x)

=


dxF(x)ψ∗(x,t)ψ(x,t) (6.2)

whilefromEhrenfest’sPrinciple,onefindsthattheexpectationvalueofmomentum
is


<p>=


dxψ∗(x)

(
−ih ̄


∂x

)
ψ(x,t) (6.3)

Butwewouldalsoliketoknowhowtocomputetheexpectationvalueofenergy


<E>=<H> = <

p^2
2 m

+V(x)>

=

1


2 m

<p^2 >+<V(x)> (6.4)

aswellastheuncertaintyinmomentum


∆p^2 =<p^2 >−<p>^2 (6.5)

andtoevaluateeitherofthesequantities,itisnecessarytoevaluate<p^2 >. What
isneededisaprobabilitydistributionformomentum, Pdp(p),analogoustoPdx(x),
givingtheprobabilitythattheparticlemomentumwillbefoundwithinasmallrange
ofmomentaaroundp. Thisdistributioncanbededucedfromtheruleforcomputing


,andtheinverseFouriertransformrepresentation(5.50).
Atagiventimet 0 ,thewavefunctionisafunctionofxonly, whichwe denote,
again,by
φ(x)≡ψ(x,t 0 ) (6.6)

andexpectationvalueofmomentumatthatinstantisgivenby


<p>=


dxφ∗(x)

(
−ih ̄


∂x

)
φ(x) (6.7)

Expressingφ(x)intermsofitsinverseFouriertransform,eq. (5.50),andproceeding
asineq. (5.75)


<p> =


dxφ∗(x)

(
−i ̄h


∂x

)
φ(x)

=



dx

{∫
dp 1
2 π ̄h

f(p 1 )eip^1 x/ ̄h

}∗(
−i ̄h


∂x

)∫
dp 2
2 πh ̄

f(p 2 )eip^2 x/ ̄h

=


∫ dp
1
2 π ̄h

f∗(p 1 )

∫ dp
2
2 π ̄h

p 2 f(p 2 )


dxei(p^2 −p^1 )x/ ̄h

=


∫ dp
1
2 π ̄h

f∗(p 1 )

∫ dp
2
2 π ̄h

p 2 f(p 2 )2πh ̄δ(p 1 −p 2 ) (6.8)
Free download pdf