QMGreensite_merged

(bbancia) #1

6.1. THEEXPECTATIONVALUEOFPN 87


Then,usingthedeltafunctiontoeliminateoneofthep-integrations,wefind


<p>=


dpp

f∗(p)f(p)
2 π ̄h

(6.9)


Comparisonofthisexpressiontothecorrespondingexpressionforposition


<x>=


xPdx(x) (6.10)

showsthattheprobabilityPdp(p)tofindtheparticlemomentuminaninfinitesmal
rangedparoundmomentumpis


Pdp(p)=

f∗(p)f(p)
2 π ̄h

dp (6.11)

Thentheexpectationvalue<G(p)>ofanyfunctionofmomentumisgivenby


<G(p)>=

∫ dp

2 π ̄h

G(p)f∗(p)f(p) (6.12)

andinparticular


<pn>=

∫ dp

2 π ̄h

pnf∗(p)f(p) (6.13)

Itisusefultoexpressdirectlyintermsofthewavefunctionφ(x),rather
thanitsFouriertransform. Usingeq. (5.54)toreexpressf(p)intermsofφ(x),and
insertingthisexpressioninto(6.13),wehave


<pn> =

∫ dp

2 π ̄h

pn

{∫
dx 1 φ(x 1 )e−ipx^1 / ̄h

}∗∫
dx 2 φ(x 2 )e−ipx^2 / ̄h

=



dx 1 φ∗(x 1 )


dx 2 φ(x 2 )

∫ dp

2 π ̄h

pnei(x^1 −x^2 )p/ ̄h

=



dx 1 φ∗(x 1 )


dx 2 φ(x 2 )

(
i ̄h


∂x 2

)n∫
dp
2 π ̄h

ei(x^1 −x^2 )p/ ̄h

=



dx 1 φ∗(x 1 )


dx 2 φ(x 2 )

(
i ̄h


∂x 2

)n
δ(x 1 −x 2 ) (6.14)

Integratingbypartsntimeswithrespecttox 2 ,thisbecomes


<pn> =


dx 1


dx 2 φ∗(x 1 )δ(x 1 −x 2 )

(
−i ̄h


∂x 2

)n
φ(x 2 )

=



dxφ∗(x)

(
−i ̄h


∂x

)n
φ(x) (6.15)

Theconclusionisthattheexpectationvalueatanytimetisjust


<pn>=


dxψ∗(x,t)p ̃nψ(x,t) (6.16)

wherep ̃isthemomentumoperator


p ̃=−i ̄h


∂x

(6.17)


introducedinthelastlecture.

Free download pdf