QMGreensite_merged

(bbancia) #1

88 CHAPTER6. ENERGYANDUNCERTAINTY


6.2 The Heisenberg Uncertainty Principle


Letususe(6.16)tocomputethemomentumuncertainty∆pforthegaussianwavepacket


φ(x)=

1


(πa^2 )^1 /^4

e−x

(^2) / 2 a 2
eip^0 x/ ̄h (6.18)
whichwealreadyknowhasamomentumexpectationvalue


=p 0 (6.19)
andapositionuncertainty
∆x=
a

2

(6.20)


Thesquaredmomentumuncertaintyis


∆p^2 = <p^2 >−<p>^2 =<p^2 >−p^20

= − ̄h^2


dxφ∗(x)

∂^2


∂x^2

φ(x) − p^20

= −


̄h^2

πa^2


dxexp

(
−i

p 0 x
̄h


x^2
2 a^2

)

×


[
(i

p 0
̄h


x
a^2

)^2 −


1


a^2

]
exp

(
i

p 0 x
̄h


x^2
2 a^2

)
− p^20

=


̄h^2
2 a^2

(6.21)


or


∆p=

̄h

2 a

(6.22)


Multiplying∆xand∆p,theproductofuncertaintiesissimply


∆x∆p=

̄h
2

(6.23)


Wewill show inthe next chapter(the sectionon the generalized Uncertainty
Principle)that ̄h/ 2 isthesmallestvaluefortheproductof∆x∆pthatcanbeobtained
foranywavefunction;wavefunctionswhichdifferfromthegaussianwavepackethave
productsgreaterthan ̄h/2. Therefore,foranyphysicalstate,theproductofposition
andmomentumuncertaintiesobeystheinequality


∆x∆p≥

̄h
2

(6.24)


Acorollaryofthisfactis

Free download pdf