QMGreensite_merged

(bbancia) #1

92 CHAPTER6. ENERGYANDUNCERTAINTY


6.3 The Energy of Energy Eigenstates


Wehaveseenthattheexpectationvalueofenergyisgivenby


<E>=


dxψ∗(x,t)H ̃ψ(x,t) (6.37)

butofcourseaseriesofexperimentscangivemuchmoreinformationabouttheenergy
distributionthanjust.AccordingtoBohr’smodeloftheHydrogenatom,an
orbitingelectroncanbefoundtohaveonlycertaindefiniteenergies


En=−

(
me^4
2 ̄h^2

)
1
n^2

(6.38)


andtheremustbesometruthtothisidea,becauseitexplainsatomicspectrasowell.
WewouldliketousetheSchrodingerequationtocomputewhichenergiesarepossible
foranorbitingelectronorforanyothersystem,andtheprobabilitiesoffindingthese
energiesinameasurementprocess.
Afirstsignthat theenergies of boundstates maybe discretecomesfrom the
particleinatube,whereitwasfoundthattheenergyeigenvaluesare


En=n^2

π^2 ̄h^2
2 mL^2

(6.39)


Thequestion is: Inwhat way aretheenergy eigenvaluesof the time-independent
Schrodingerequationrelatedtotheenergiesthatmightactuallybefoundinapartic-
ularmeasurement? Wenowshow,usingeq. (6.37),andtheorthogonalityproperty
(seebelow)oftheenergyeigenstates


<φn|φm>= 0 if En+=Em (6.40)

thatthesetofenergyeigenvaluescoincideswiththesetofenergiesthatcanbefound
bymeasurement,andalsoshowhowtocomputetheprobabilityassociatedwitheach
energy.
Forsimplicity,assumethattheeigenvaluesarediscreteandnon-degenerate,which
meansthatnotwoeigenvaluesareequal.Toprovetheorthogonalityproperty(6.40),
beginbyconsideringthequantity


Hmn=


dxφ∗m(x)H ̃φn(x) (6.41)

Fromthetime-independentSchrodingerequation


H ̃φk(x)=Ekφk(x) (6.42)

thisbecomes


Hmn = En


dxφ∗m(x)φn(x)
= En<φm|φn> (6.43)
Free download pdf