QMGreensite_merged

(bbancia) #1

6.3. THEENERGYOFENERGYEIGENSTATES 93


Ontheotherhand,usingtheintegrationbypartsformula(5.7),


Hmn =


dx

{

̄h^2
2 m

φ∗m

∂^2 φn
∂x^2

+V(x)φ∗mφn

}

=



dx

{

̄h^2
2 m

∂^2 φ∗m
∂x^2

φn+V(x)φ∗mφn

}

=



dx(H ̃φm)∗φn
= Em∗ <φm|φn> (6.44)

Comparing(6.43)and(6.44),


En<φm|φn>=E∗m<φm|φn> (6.45)

Forthecasen=m,thisequationimplies


En=E∗n (6.46)

i.e.theenergyeigenvaluesarereal,whileforn+=m


(En−Em)<φm|φn>= 0 (6.47)

Whentheeigenvaluesarenon-degenerate,itmeansthat


n+=m=⇒En+=Em (6.48)

andtherefore
<φm|φn>= 0 (n+=m) (6.49)


Choosingtheeigenstatesφntosatisfythenormalizationcondition


<φn|φn>= 1 (6.50)

establishestherelation
<φm|φn>=δmn (6.51)


whichwehavealreadyseentobetrue(eq. (5.122))inthecaseoftheparticleina
tube.
Accordingtoeq. (5.38),thegeneralsolutiontothetime-dependentSchrodinger
equationcanbeexpressedintermsoftheenergyeigenstatesas


ψ(x,t)=


n

anφne−iEnt/ ̄h (6.52)

Thentheenergyexpectationvalueis


=



dx

[

n

amφme−iEmt/ ̄h

]∗
H ̃


n

anφne−iEnt/ ̄h

=


m


n

a∗mane−i(En−Em)t/ ̄hEn<φm|φn>

=


n

Ena∗nan (6.53)
Free download pdf