QMGreensite_merged

(bbancia) #1

94 CHAPTER6. ENERGYANDUNCERTAINTY


Nowrecalltheexpression(4.67),fromprobabilitytheory,fortheexpectationvalue
ofanyquantityQ
=



n

QnP(Qn) (6.54)

where{Qn}arethesetofpossiblevaluesofthequantity,andP(Qn)istheprobability
thatthevalueQnwillbefoundbymeasurement.Comparing(6.53)to(6.54),wefind
that:


I.Thesetofenergiesthatcanbefoundbymeasurementisthesetofenergyeigenvalues
{En}ofthetimeindependentSchrodingerequation;and


II.Theprobabilitythatastateψ(x,t)willbefoundtohaveanenergyEnisgiven
bythesquaredmodulusofcoefficients


P(En)=|an|^2 (6.55)

Tocomputean intermsof thewavefunction ψ(x,t),we multiply bothsidesof
(6.52)byφ∗m(x),andintegrateoverx,andusetheorthogonalityproperty(6.51)

dxφ∗m(x)ψ(x,t) =



dxφ∗m(x)


n

anφne−iEnt/ ̄h

<φm|ψ> =


n

ane−iEnt/ ̄h<φm|φn>

=


n

ane−iEnt/ ̄hδmn

= ame−iEmt/ ̄h (6.56)

Soweseethat
an(t)≡ane−iEnt/ ̄h=<φn|ψ> (6.57)


andtheprobabilityforfindingtheenergyEn,whenthesystemisinthephysicalstate
|ψ>,isgivenby
P(En)=|<φn|ψ>|^2 (6.58)
Inparticular,fortheparticleinatube,thelowestpossibleenergyfortheparticle
isthelowesteigenvalue


E 1 =

π^2 ̄h^2
2 mL^2

(6.59)


andthecorrespondingeigenstate


φ 1 (x)=


2
L

sin(

πx
L

) (6.60)


isknownasthe”groundstate.”Ingeneral,thegroundstateisthelowestenergy
stateofaquantumsystem(inquantumfieldtheory,itisalsoknownasthe”vacuum

Free download pdf