QMGreensite_merged

(bbancia) #1

7.3. EIGENSTATESASSTATESOFZEROUNCERTAINTY 111


EigenstatesofMomentum


For
p ̃=−i ̄h


∂x

(7.80)


theeigenvalueequationis


−ih ̄


∂x

φp 0 (x)=p 0 φp 0 (x) (7.81)

whichhassolutions
{
eigenstates φp 0 (x)=


1



2 π ̄h

eip^0 x/ ̄h, eigenvalues p 0 ∈[−∞,∞]

}
(7.82)

withinnerproducts


<φp 1 |φp 2 >=δ(p 1 −p 2 ) (7.83)

AsaconsequenceoftheoremH3,anyarbitraryfunctionψ(x)can bewrittenas a
superpositionoftheseeigenstates:


ψ(x)=


dp 0 cp 0 φp 0 (x) (7.84)

Thecoefficientfunctioncp 0 isobtainedbymultiplyingbothsidesofthisequationby
φ∗p 1 (x),andintegratingoverx

dxφ∗p 1 (x)ψ(x) =



dx


dp 0 cp 0 φ∗p 1 (x)φp 0 (x)
1

2 π ̄h


dxψ(x)e−ip^1 x/ ̄h =

∫ dp
0
2 π ̄h

cp 0


dxei(p^0 −p^1 )x/ ̄h

=



dpcp 0 δ(p 1 −p 2 ) (7.85)

or


cp=

1



2 π ̄h


dxψ(x)e−ip^1 x/ ̄h (7.86)

EigenstatesofEnergy: TheParticleinaTube


TheHamiltonianoperatoris

H ̃=− ̄h

2

2 m

∂^2


∂x^2

+V(x) (7.87)

whereV(x)for the particle ina tubewas givenineq. (5.100). The eigenvalue
equationisthetime-independentSchrodingerequation
[


h ̄^2
2 m

∂^2


∂x^2

+V(x)

]
φn(x)=Enφn(x) (7.88)
Free download pdf