QMGreensite_merged

(bbancia) #1

122 CHAPTER8. RECTANGULARPOTENTIALS


ticleintheclassicallyforbiddenregions,andthisfactgivesrisetosomeremarkable
phenomenawhichareinconceivableat theclassicallevel. Nevertheless, thewave-
functiondoesbehave quitedifferentlyintheclassicallyallowedandtheclassically
forbiddenregions,asonemightexpect,sinceclassicalbehaviorisanapproximation
toquantummechanics,andshouldbecomeexactinthe ̄h→ 0 limit.
Thetime-independentSchrodingerequationisa2ndorderdifferentialequation


d^2 φ
dx^2

=−


2 m
̄h^2

(E−V)φ (8.1)

Ingeneral,thefirstderivativeofafunctionf′=df/dxistheslopeoff(x),thesecond
derivativef′′=d^2 f/dx^2 isthecurvature.Iff′′> 0 atpointx,thenf(x)isconcave
upwardsatthatpoint;similarly,iff′′<0,thenf(x)isconcavedownwards. From
eq. (8.1),wecanseethat:


E>V ClassicallyAllowedRegion


φ> 0 φ(x) concavedownwards
φ< 0 φ(x) concaveupwards

(8.2)


Sincethewavefunctiontends tocurve downwardswhen φispositive, andupward
whenφisnegative,theresultisanoscillatingwavefunctionintheclassicallyallowed
regions,asshowninFig. [8.2].


E<V ClassicallyForbiddenRegion


φ> 0 φ(x) concaveupwards
φ< 0 φ(x) concavedownwards

(8.3)


Intheclassicallyforbiddenregions,oscillatorybehaviorisimpossible,andthewave-
functiontendstoeithergrowordecayexponentially,asshowninFig. [8.3]


Wecan use this qualitative informationto sketcha roughpicture of whatan
energyeigenstateinthepotentialshowninFig. [8.1]mustlooklike. Letusbegin
withE > Vmax. Inthatcase, there areno classically forbidden regions,and the
functionoscillates everywhere. Thecurvature,andthereforetherateofoscillation,
dependsontheratio
φ′′
φ


=−


̄h^2
2 m

(E−V) (8.4)


so that thegreaterE−V is, thefaster thewavefunctionoscillates. Thegeneral
behaviorisshowninFig.[8.4];anenergyeigenstatewilllooksomethinglikethisfor
anyenergyE>Vmax.

Free download pdf