QMGreensite_merged

(bbancia) #1

8.4. THEFINITESQUAREWELL:BOUNDSTATES 131


BoundStates E< 0


Webeginwithadiscussionoftheboundstates.InRegionsIandIIItheSchrodinger
equationisthesameasafreeparticleequation,andthesolutionis


φI(x) = a 1 ei


2 mEx/ ̄h+a 2 e−i

2 mEx/ ̄h

φIII(x) = b 1 ei


2 mEx/ ̄h+b
2 e
−i

2 mEx/ ̄h (8.39)

However,sinceE<0,thesquare-rootisimaginary.WritingE=−E,wehave


φI(x) = a 1 e−


2 mEx/ ̄h+a
2 e


2 mEx/ ̄h

φIII(x) = b 1 e−

√ 2 mEx/ ̄h
+b 2 e

√ 2 mEx/ ̄h
(8.40)

Ifψisaphysicalstate,wemustseta 2 =b 1 =0;otherwisethewavefunctionblows
upexponentiallyasx→±∞andthestateisnon-normalizable.Then


φI(x) = Ae−


2 mEx/ ̄h

φIII(x) = Be


2 mEx/ ̄h (8.41)

NowsupposewechooseAtobearealnumber.Thenφ(x)mustberealeverywhere.
ThereasonisthattheSchrodingerequationisalinearequationwithrealcoefficients,
sowriting
φ(x)=φR(x)+iφI(x) (8.42)


itseasytoseethatφRandφImustbothsatisfytheSchrodingerequation


H ̃φR=EφR H ̃φI=EφI. (8.43)

Setting Ato beareal number meansthat φI = 0 forx> a, which meansitis
zeroeverywhere, because the Schrodingerequation saysthat φ′′(x) ∝ φ(x). The
conclusionisthatφ(x)isrealeverywhere;inparticular,theconstantBisalsoareal
number.
Letφ(x)beasolutionofthetime-independentSchrodingerequationwithenergy
En. Wecanshowthat
φ(x)=φ(−x) (8.44)


isalsoaneigenstateofH ̃,withthesame energy. Startwiththetime-independent
Schrodingerequation



̄h^2
2 m

d^2
dx^2

φ(x)+V(x)φ(x)=Eφ(x) (8.45)

makethechangeofvariablesx→−x



̄h^2
2 m

d^2
dx^2

φ(−x)+V(−x)φ(−x) = Eφ(−x)


̄h^2
2 m

d^2
dx^2

φ(x)+V(x)φ(x) = Eφ(x) (8.46)
Free download pdf