QMGreensite_merged

(bbancia) #1

132 CHAPTER8. RECTANGULARPOTENTIALS


Thisproves that φ(x)is alsoa solution. Thecrucial factusedin(8.46) wasthe
symmetryofV(x)aroundx= 0


V(x)=V(−x) (8.47)

Withoutthissymmetry,φ(x)=φ(−x)wouldnotbeasolutionoftheSchrodinger
equation.
IfEn isdegenerate,thenφ(x)andφ(x)couldbetwodifferentstates. Onthe
otherhand,ifEnisnon-degenerate,thenthetwofunctionsmustbeproportionalto
oneanother:
φ(x)=cφ(x) (8.48)


wherecisareal-valuedconstant,sinceφandφarebothreal-valued. Finally,the
normalizationconditionrequires

dxφ^2 =c^2



dxφ^2 = 1 (8.49)

whichmeans, sinceφisnormalized,thatc=±1. Weconcludethat ifEn isnon-
degeneratetherearetwopossibilities:



  1. ”EvenParity”


φ(−x)=+φ(x) (8.50)


  1. ”OddParity”


φ(−x)=−φ(x) (8.51)
Assumingthattheenergyeigenvaluesarenon-degenerate, thealgebrasimplifies
alot.InregionII,theSchrodingerequationisoftheform


d^2 φII
dx^2

=−


2 m
̄h^2

(V 0 −E)φII (8.52)

withsolutions
φII=c 1 ei



2 m(V 0 −E)x/ ̄h+c
2 e
−i


2 m(V 0 −E)x/ ̄h (8.53)

However,sinceφIImustbearealfunction,weexpandtheexponentialsinacombi-
nationofsinandcosine


φII=CEcos

[√
2 m(V 0 −E)x/ ̄h

]
+COsin

[√
2 m(V 0 −E)x/ ̄h

]
(8.54)

Wehaveseenthatthenon-degeneratesolutionshavetobeeitherevenoroddparity.
Forevenparity, CO =0,while foroddparityCE =0. Wedealwiththesecases
separately.

Free download pdf