QMGreensite_merged

(bbancia) #1

136 CHAPTER8. RECTANGULARPOTENTIALS


where


Aei


2 mEx/ ̄h representstheincomingwavepacket

Be−i


2 mEx/ ̄h representsthereflectedwavepacket

Eei


2 mEx/ ̄h representsthetransmittedwavepacket

Thereflectionandtransmissioncoefficientswillthereforebe


R=

BB∗


AA∗


T=


EE∗


AA∗


(8.70)


sotheproblemistocomputeBandEintermsofA.
Weshouldpausetonotethatφ(x)+=±φ(−x). Thereasonisthat inthiscase
theenergyisdegenerate;aparticleapproachingthepotentialfromtheleftcanhave
exactlythesameenergyasaparticleapproachingthewellfromtheright.Inthissitua-
tion,anenergyeigenstatedoesnotnecessarilyhavethepropertythatφ(x)=±φ(−x);
althoughφ(x)=φ(−x)isanenergyeigenstate,itisnotnecessarilyequivalenttoφ(x)
iftheenergyisdegenerate.Forthewavefunctionφ(x)ofeq. (8.69),whichrepresents
aparticleapproachingthewellfromtheleftandthenscattering,φ(x)representsa
particleapproachingthepotentialfromtheright,andthenscattering.
Denote


k=


2 mE
h ̄

and q=


2 m(E+V 0 )
h ̄

(8.71)


sothat


φIII(x) = Aeikx+Be−ikx
φII(x) = Ceiqx+De−iqx
φI(x) = Eeikx (8.72)

Imposingcontinuityofthewavefunctionanditsfirstderivativeatx=agiveus


φI(a)=φII(a) =⇒ Eeika=Ceiqa+De−iqa
φ′I(a)=φ′II(a) =⇒ kEeika=q(Ceiqa−De−iqa) (8.73)

Thecorrespondingcontinuityconditionsatx=−aare


φIII(−a)=φII(−a) =⇒ Ae−ika+Beika=Ce−iqa+Deiqa
φ′III(−a)=φ′II(−a) =⇒ k(Ae−ika−Beika)=q(Ce−iqa−Deiqa) (8.74)

Wefirstsolveeq. (8.73)forC andDintermsofE:


C =

1


2


(1+


k
q

)Eei(k−q)a

D =


1


2


(1−


k
q

)Eei(k+q)a (8.75)
Free download pdf