QMGreensite_merged

(bbancia) #1

8.4. THEFINITESQUAREWELL:BOUNDSTATES 137


substituteinto(8.74)


Ae−ika+Beika =

[
1
2

(1+


k
q

)ei(k−^2 q)a+

1


2


(1−


k
q

)ei(k+2q)a

]
E

k(Ae−ika−Beika) = q

[
1
2

(1+


k
q

)ei(k−^2 q)a−

1


2


(1−


k
q

)ei(k+2q)a

]
E (8.76)

SolvingforEintermsofA,wefind


2 kAe−ika =

[
(k+q)

1


2


(1+


k
q

)ei(k−^2 q)a+(k−q)

1


2


(1−


k
q

)ei(k+2q)a

]
E

=


[
(k+

k^2
2 q

+


q
2

)ei(k−^2 q)a+(k−

k^2
2 q


q
2

)ei(k+2q)a

]
E (8.77)

sothat


E
A

=


2 e−ika
(1+ 2 kq+ 2 qk)ei(k−^2 q)a+(1− 2 kq− 2 qk)ei(k+2q)a

=

e−^2 ika
cos(2qa)+ 21 ( 2 kq+ 2 qk)(e−^2 iqa−e^2 iqa)

=

e−^2 ika
cos(2qa)− 2 i(kq+qk)sin(2qa)

(8.78)


Inasimilarway,onecansolveforBintermsofA


B
A

=


1
2 ie

− 2 ika(q
k−

k
q)sin(2qa)
cos(2qa)−^12 i(qk+kq)sin(2qa)

(8.79)


Fromtheseratios,weobtainthetransmissionandreflectioncoefficients


T =


∣∣
∣∣E
A

∣∣
∣∣

2
=

1


cos^2 (2qa)+^14 (kq+qk)^2 sin^2 (2qa)

R =


∣∣
∣∣B
A

∣∣
∣∣

2
=

1
4 (

q
k−

k
q)

(^2) sin^2 (2qa)
cos^2 (2qa)+^14 (kq+qk)^2 sin^2 (2qa)


(8.80)


anditiseasytocheckthat
R+T= 1 (8.81)


asrequiredbyconservationofprobability.
NownoticethatsomethinginterestinghappenswhentheenergyEoftheincoming
particleissuchthat


2 qa= 2


2 m(E+V 0 )

a
h ̄

=nπ (8.82)
Free download pdf