QMGreensite_merged

(bbancia) #1

Chapter 9


The Harmonic Oscillator


ThereareonlyaveryfewpotentialsforwhichtheSchrodingerequationcanbesolved
analytically. Themostimportantoftheseisthepotential


V(x)=

1


2


k(x−x 0 )^2 (9.1)

oftheharmonic oscillator,becauseso manyof thesystemsencounteredinnuclear
physics,condensedmatterphysics,andelementaryparticlephysicscanbetreated,
toafirstapproximation,asasetofcoupledharmonicoscillators.
Thereareseveralreasonswhytheharmonicoscillatorpotentialshowsupsoof-
ten. Firstofall,anyfinitepotentiallookslikeaharmonicoscillatorpotentialinthe
neighborhoodofitsminimum. Supposetheminimumofapotentialisatthepoint
x=x 0 .ExpandthepotentialinaTaylorseriesaroundx 0


V(x)=V(x 0 )+

(
dV
dx

)

x=x 0

(x−x 0 )+

1


2


(
d^2 V
dx^2

)

x=x 0

(x−x 0 )^2 +... (9.2)

BecauseV(x)isaminimumatx 0 ,thefirstderivativeofthepotentialvanishesthere,
so


V(x)=V(x 0 )+

1


2


(
d^2 V
dx^2

)

x=x 0

(x−x 0 )^2 +... (9.3)

Forsmalldisplacements,thisisjustaharmonicoscillator.
Secondly, any timetheclassical equations of motionarelinear, itmeansthat
wearedealingwithaharmonicoscillator,orasetofcoupledharmonicoscillators.
Newton’slawofmotionF=maisgenerallynon-linear,sinceF(x)isusuallyanon-
linearfunctionofx.However,ifFdependslinearlyonx,itfollowsthatthepotential
dependsquadraticallyonx,whichimpliesaharmonicoscillator. Nowitsohappens
thatanynon-dispersivewaveequation,e.g.


1
v^2

∂^2 y
∂t^2

=


∂^2 y
∂x^2

(9.4)


141

Free download pdf