QMGreensite_merged

(bbancia) #1

146 CHAPTER9. THEHARMONICOSCILLATOR


Thecommutationrelation(9.26)alsosaysthat


aa†=a†a+ 1 (9.35)

so


H ̃φ” = ̄hω[a†(a†a+1)+^1
2

a†]φn

= a†[ ̄hω(a†a+

1


2


)+ ̄hω]φn

= a†[H ̃+ ̄hω]φn
= (En+ ̄hω)a†φn
= (En+ ̄hω)φ” (9.36)

andthereforeφ”=a†φnisanenergyeigenstatewitheigenvalueE=En+ ̄hω.
Nextweusethefactthattheharmonicoscillator,likethehydrogenatom,hasa
lowestenergystate(or”ground”state). Thattheremustbealowestenergystateis
clearfromtheuncertaintyprinciple,butwecanalsoseeitfromthefactthat


<p^2 > = <ψ|p^2 |ψ>=<pψ|pψ> ≥ 0
<x^2 > = <ψ|x^2 |ψ>=<xψ|xψ> ≥ 0 (9.37)

wherewehaveusedthehermiticityofxandp,andalsothefactthatthenormof
anynon-zerovectorisgreaterthanzero. Then


<H>=

1


2 m

<p^2 >+

1


2


k<x^2 > ≥ 0 (9.38)

This proves that a groundstate exists, withan energy greaterthan or equal to
zero. However,theexistenceofagroundstateseemstocontradictthefactthat,by
operatingonthegroundstatewiththeloweringoperatora,wegetastatewithstill
lowerenergy.Denotethegroundstatebyφ 0 ,theground-stateenergybyE 0 ,andlet
φ′=aφ 0 .Then,accordingtoeq. (9.32)


H ̃(aφ 0 )=(E 0 − ̄hω)(aφ 0 ) (9.39)

Thisequationissatisfiedifφ′=aφ 0 isaneigenstateofH ̃withenergyE 0 − ̄hω,which
meansthatφ 0 isnotthegroundstate,orif


aφ 0 = 0 (9.40)

Sincewehaveprovedthat agroundstateexists, thentheloweringoperatormust
”annihilate”thegroundstate;i.e. bringitto0,asshownin(9.40).Equation(9.40)
isafirst-orderdifferentialequationforthegroundstate:
(

mωx+ ̄h


1





∂x

)
φ 0 = 0 (9.41)
Free download pdf