QMGreensite_merged

(bbancia) #1

148 CHAPTER9. THEHARMONICOSCILLATOR


Proceedinginthisway,wefindaninfinitesetofeigenstatesoftheform


φn = cn(a†)nφ 0 n= 0 , 1 , 2 , 3 ,...

En = ̄hω(n+

1


2


) (9.50)


Now,howdoweknowthatthisisalltheeigenstatesthatthereare? Suppose,for
example, thatthere werean eigenstateφ′ withanenergy inbetween E 0 andE 1.
Ifthat werethecase,theapplyingtheloweringoperatortothestatewouldeither
annihilatethestate,orelsegiveaneigenstatewithanenergylowerthantheground
state. Sincethegroundstateexists,andisφ 0 bydefinition,itmeansthataφ′=0.
Buttheonlysolutiontothisequationisφ′=φ 0. Therefore,thereisnostatewith
energybetweenE 0 andE 1. Sosupposeinsteadtherewereastateφ′′withenergy
betweenEnandEn+1. Applyingtheloweringoperatortoφ′′lowerstheenergy by
integermultiplesof ̄hω,untilwereachastateφ′withanenergybetweenE 0 andE 1.
Butwehavejustseenthatthereisnosuchstate.Thismeansthatthereisnostate
withenergybetweenEnandEn+1. Sotheonlypossibleenergiesarethoseshownin
(9.50).
Still,howdoweknowthattheseenergiesarenon-degenerate?Suppose,e.g.,there
wasastateφ′ 1 +=φ 1 withenergyE 1. Applyingtheloweringoperator,wewouldget
asecondgroundstateφ′ 0 withenergyE 0. Butthen,sincethereisnoenergylower
thantheground-stateenergy,


aφ′ 0 = 0 =⇒φ′ 0 =φ 0 (9.51)

whichimplies,since
φ′ 0 ∝aφ′ 1 (9.52)


thatφ′ 1 =φ 1 .ThisargumentiseasilygeneralizedtoanyenergyEn,andtheconclu-
sionisthatthereisonlyoneeigenstateforeachenergyeigenvalue.
Next,we need to find the normalization constants cn in(9.50). This isdone
iteratively. Beginfrom
c 0 = 1 (9.53)


andimposethenormalizationcondition


1 = <φn|φn>
= c^2 n<(a†)nφ 0 |(a†)nφ 0 >
= c^2 n<a†(a†)n−^1 φ 0 |(a†)nφ 0 >
= c^2 n<(a†)n−^1 φ 0 |a(a†)n|φ 0 > (9.54)

Theideaistocommutetheaoperatortotheright,pastthea†operators, untilit
finallyoperateson,andannhilates,thegroundstateφ 0. Wehave


a(a†)n = (aa†)(a†)n−^1
Free download pdf