QMGreensite_merged

(bbancia) #1

9.1. RAISINGANDLOWERINGOPERATORS 149


= (a†a+1)(a†)n−^1
= a†a(a†)n−^1 +(a†)n−^1
= a†(a†a+1)(a†)n−^2 +(a†)n−^1
= (a†)^2 (a†a+1)(a†)n−^3 +2(a†)n−^1
= (a†)^3 (a†a+1)(a†)n−^4 +3(a†)n−^1
.
.
= (a†)na+n(a†)n−^1 (9.55)

Equation(9.54)becomes


1 =c^2 n<(a†)n−^1 φ 0 |[(a†)na+n(a†)n−^1 ]|φ 0 > (9.56)

Usinga|φ 0 >=0,


1 = nc^2 n<(a†)n−^1 φ 0 |(a†)n−^1 |φ 0 >

= n

c^2 n
c^2 n− 1

<φn− 1 |φn− 1 >

= n

c^2 n
c^2 n− 1

(9.57)


sothat
cn=


cn− 1

n

(9.58)


Usingthisequation,andc 0 =1,weget


c 1 = 1
c 2 =

1



2 · 1


c 3 =

1



3 · 2 · 1


(9.59)


or,ingeneral


cn=

1



n!

(9.60)


We now have the general solution for the energy eigenstates of the harmonic
oscillator:


φn(x) =

1



n!

(a†)nφ 0 (x)

=


(

πh ̄

) 1 / 4
1

n!


√^1
2

(




̄h

x−


̄h


∂x

)




n
e−mωx

(^2) /2 ̄h
(9.61)

Free download pdf