QMGreensite_merged

(bbancia) #1

150 CHAPTER9. THEHARMONICOSCILLATOR


Rescalingx


y=



̄h

x (9.62)

Thegeneralsolutionbecomes


φ(x) =

1



n!

(mω

π ̄h

) 1 / 4 ( 1



2


)n(
y−


∂y

)n
e−y

(^2) / 2


=


1



n!

(

π ̄h

) 1 / 4 (
1

2

)n
Hn(y)e−y

(^2) / 2
(9.63)
withcorrespondingeigenvalues
En= ̄hω(n+


1


2


) (9.64)


ThefunctionsHn(y)areknownasHermite Polynomials. Operatingntimeson
thegroundstatewiththeraisingoperatora†resultsinafunctionwhichisjustthe


groundstatemultipliedbyann-thorderpolynomialinthevariabley=



mω/h ̄x.
ThesearetheHermitepolynomials.ThefirstseveralHermitepolynomialsare:


H 0 (y) = 1
H 1 (y) = 2 y
H 2 (y) = 4 y^2 − 2
H 3 (y) = 8 y^3 − 12 y (9.65)

Byapplyingeq. (9.63),theHermitepolynomials,andtheeigenstatesφn(x),canbe
determinedtoanyorderdesired.


9.2 Algebra and Expectation Values


Oneofthemostremarkablepropertiesofthe quantumharmonicoscillatoristhat
manycalculationsinvolvingexpectationvaluescanbedonealgebraically,withoutever
usingtheexplicitformoftheeigenstatesφn(x).Thereasonsforthisare,first,thatthe
xandpoperatorsarelinearcombinationsoftheraisingandloweringoperators(eq.
(9.27));andsecond,thattheraisingandloweringoperatorshaveasimplealgebraic
actionontheeigenstates.
Considertheraisingoperatoractingonthestateφn. Usingeq. (9.61)wehave


a†|φn> =

1



n!

(a†)n+1|φ 0 >

=



(n+1)

1



(n+1)!

(a†)n+1|φn+1>

=



n+ 1 |φn+1> (9.66)
Free download pdf