QMGreensite_merged

(bbancia) #1

154 CHAPTER10. SYMMETRYANDDEGENERACY


figure. Ontheotherhand,supposeeverypoint(x′,y′)ontheoriginal sketchwere
movedtoanewpoint(x′,y′)accordingtotherule


x′=−x y′=y (10.3)

Thistransformationreplacestheright-handsideofthefigurebytheleft-handside,
andvice-versa. Thetransformedstick figureisindistinguishablefromtheoriginal
figure,anditisthereforesaidtobesymmetricunderleft-rightreflection.



  • Periodicity (Symmetry underFinite Translations) Considernextthe
    sin-wave shown inFig. [10.3]. Ingeneral, ifwe transform every point(x,y) →
    (x′,y′)accordingtotherule(10.2),thefigurewillendupinadifferentplace,and
    thusbe distinguishable fromthe untransformed figure. However, ifwe make the
    transformation
    x′=x+ 2 πn y′=y (10.4)


wherenisaninteger,thenthenewfigureisthesameastheold,duetotheperi-
odicityofsin-waves.Thesespecialtranslationsarethereforeasymmetryofperiodic
functions,suchassinandcosine.



  • RotationSymmetry Asafinalexample,considerthepointsonacircleof
    radiusR. Eachpointonthecirclecanbeassignedpolarcoordinates(r,θ),where
    r=Rand 0 ≤θ< 2 π. Acircleisobviouslysymmetricunderarbitaryrotations


r′=r θ′=θ+δθ (10.5)

whereδθisanyconstantangle.


Symmetriesareimportantinquantummechanics whenevertheHamiltonian is
invariantundersomecoordinatetransformation:


x′ = f(x)

∂x′

=


(
∂f
∂x

)− 1

∂x

(10.6)


wheretheword”invariant”meansthat


H ̃[−ih ̄ ∂
∂x′

,x′]=H ̃[−i ̄h


∂x

,x] (10.7)

Supposeφα(x)isaneigenstateofH ̃


H ̃[−i ̄h∂
∂x

,x]φα(x)=Eαφα(x) (10.8)
Free download pdf