QMGreensite_merged

(bbancia) #1

10.4. THEQUANTUMCORRAL 163


Therefore


β^2 = 1 =⇒ β=± 1 (10.71)

Becauseφnm(x,y)andφmn(x,y)havethesameenergy,sodoesanylinearcombi-
nation


Φ(x,y)=aφnm(x,y)+bφmn(x,y) (10.72)

RequiringΦtobeaneigenstateofIwitheigenvalueβ= 1 meansthat φ(x,y)=
φ(y,x),or


asin[

nπy
L

]sin[

mπx
L

]+bsin[

mπy
L

]sin[

nπx
L

]


= asin[

nπx
L

]sin[

mπy
L

]+bsin[

mπx
L

]sin[

nπy
L

] (10.73)


whichissatisfiedfora=b. Likewise,forΦaneigenstateofIwitheigenvalueβ=−1,
whichmeansthatφ(x,y)=−φ(y,x)weneeda=−b. Finally,thecompletesetof
energyeigenstateswhicharealsoeigenstatesofthex−yinterchangeoperatorIare


{
Φnm+=√^12 [φnm(x,y)+φnm(y,x)]
Φnm−=√^12 [φnm(x,y)−φnm(y,x)]

}
(10.74)

Onceagain,weseethattherearesymmetryoperationswhichdo notcommute
withoneanother,andthattheenergyeigenvaluesaredegenerate. Thechoiceofa
completesetofenergyeigenstates,(10.62)or(10.74),isdeterminedbyrequiringthat
theenergyeigenstates,inadditiontobeingeigenstatesoftheHamiltonian,arealso
eigenstatesofoneofthesymmetryoperators.


10.4 The Quantum Corral


The”quantumcorral”refersto aparticlemovingintheinterior ofacircle. The
potential,inpolarcoordinates,isgivenby


V(r)=

{
0 r<R
∞ r>R

(10.75)


which,sinceitdependsonlyontheradialcoordinate,isobviouslyinvariantunder
arbitraryrotations


r′=r θ′=θ+δ′θ (10.76)

Polarcoordinatesarerelatedtocartesiancoordinatesby


x=rcosθ y=rsinθ (10.77)
Free download pdf