QMGreensite_merged

(bbancia) #1

178 CHAPTER11. ANGULARMOMENTUM


Now,we mustbeableto reachthehighest stateφabmax byacting successively on
φabminwiththeraisingoperator


φabmax∝(L ̃+)nφabmin (11.41)

whichimplies,sincetheraisingoperatorraisesbtob+1,that


bmax=bmin+n n= apositiveintegeror 0 (11.42)

or,equivalently,


bmax = bav+

n
2
bmin = bav−

n
2
bav =

1


2


(bmax+bmin) (11.43)

Next,usingtheexpressionsforL ̃^2 in(11.29)

L ̃^2 φabmax = (L ̃−L ̃++L ̃^2 z+ ̄hL ̃z)φabmax
̄h^2 a^2 φabmax = h ̄^2 bmax(bmax+1)φabmax (11.44)

sothat


a^2 = bmax(bmax+1)

= (bav+

1


2


n)(bav+

1


2


n+1) (11.45)

Likewise,


L ̃^2 φabmin = (L ̃+L ̃−+L ̃^2 z− ̄hL ̃z)φabmin
̄h^2 a^2 φabmin = h ̄^2 bmin(bmin−1)φabmin (11.46)

sothat


a^2 = bmin(bmin−1)

= (bav−

1


2


n)(bav−

1


2


n−1)

= (−bav+

1


2


n)(−bav+

1


2


n+1) (11.47)

Equatingtheright-handsidesof(11.45)and(11.47)


(bav+

1


2


n)(bav+

1


2


n+1)=(−bav+

1


2


n)(−bav+

1


2


n+1) (11.48)
Free download pdf