QMGreensite_merged

(bbancia) #1

11.4. EIGENFUNCTIONSOFANGULARMOMENTUM 181


whilevaluesofLxandLyareindefinite;althoughtheirsquaredexpectationvalues
mustsatisy
<L^2 x>+<L^2 y>+<L^2 z>=<L^2 > (11.58)


Wecanpicturetheangularmomentumassociatedwithφlmastheconeofallvectors
%Lsatisfying(11.57).Theconesforl=2,m=− 2 ,− 1 , 0 , 1 ,2,areshowninFig.[11.2].


Inclassicalmechanicsitiseasytoaddtwoormoreangularmomenta;itisjusta
matterofvectoraddition. Inquantummechanics,asonemightimagine,theprocess
ismorecomplicated. Forexample,supposeonehastwoelectronswhichareeachin
angularmomentumeigenstates,andweask: ”whatisthetotalangularmomentum
ofthesystem?”(Howdoesonegoaboutadding”cones”ofangularmomentum?)We
willlearnthe quantum-mechanicalrulesforaddition ofangularmomentuminthe
secondsemesterofthiscourse.


Problem:Showthatinaφlmeigenstate,that


<Lx>=<Ly>= 0 (11.59)

andthat


<L^2 x>=<L^2 y>=

1


2


̄h^2

[
l(l+1)−m^2

]
(11.60)

Fromthisinformation,verifythegeneralizeduncertaintyprinciple(eq. (7.116))for
∆Lx∆Ly.


11.4 Eigenfunctions of Angular Momentum


Inthecaseof theharmonicoscillator, wefoundthegroundstatewavefunctionby
solvingthefirst-orderdifferentialequation


aφ 0 (x)= 0 (11.61)

andthenallothereigenstatescanbeobtainedbyapplyingtheraisingoperatora†.
Inthecaseofangularmomentum,thestrategyisverysimilar.Foragivenl,wefirst
solvethefirst-orderdifferentialequations


L+φll(x,y,z) = 0
Lzφll(x,y,z) = l ̄hφll (11.62)

andthenobtainallotherφlmwavefunctionsinthemultipletbyapplyingsuccessively
theloweringoperatorL−.
Itis mucheasier to solve these differential equations in sphericalcoordinates
r, θ, φ


z = rcosθ
x = rsinθcosφ
y = rsinθsinφ (11.63)
Free download pdf