QMGreensite_merged

(bbancia) #1

182 CHAPTER11. ANGULARMOMENTUM


becauseinsphericalcoordinates,thervariabledropsoutoftheangularmomentum
operators:


L ̃x = i ̄h

(
sinφ


∂θ

+cotθcosφ


∂φ

)

L ̃y = i ̄h

(
−cosφ


∂θ

+cotθsinφ


∂φ

)

L ̃z = −i ̄h∂
∂φ

L ̃^2 = −h ̄^2

[
1
sinθ


∂θ

sinθ


∂θ

+


1


sin^2 θ

∂^2


∂φ^2

]
(11.64)

andthereforeanyeigenstateofangularmomentumhastheform


φlm(x,y,z)=f(r)Ylm(θ,φ) (11.65)

where


L ̃^2 Ylm(θ,φ) = l(l+1) ̄h^2 Ylm(θ,φ)
L ̃zYlm(θ,φ) = m ̄hYlm(θ,φ) (11.66)

andwheref(r)isanyfunctionsuchthatthenormalizationcondition


1 =



dxdydzφ∗(x,y,zφ(x,y,z)

=

∫∞

0

drr^2

∫π

0

dθ sinθ

∫ 2 π

0

dφf∗(r)f(r)Ylm∗(θ,φ)Ylm(θ,φ) (11.67)

issatisfied.ItisconventionaltonormalizetheYlmsuchthattheintegraloverangles
isalsoequaltoone:


∫π

0

dθ sinθ

∫ 2 π

0

dφYl∗m(θ,φ)Ylm(θ,φ)= 1 (11.68)

Withthisnormalization,theYlm(θ,φ)areknownas”SphericalHarmonics”.
Insphericalcoordinates,theraisingandloweringoperatorsare


L ̃+ = L ̃x+iL ̃y

= ̄heiφ

(

∂θ

+icotθ


∂φ

)

L ̃− = L ̃x−iL ̃y

= − ̄he−iφ

(

∂θ

−icotθ


∂φ

)
(11.69)
Free download pdf